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Figure 1: Our system enables creating realistic tracking shots from shot video sequences, with little user input. The resulting tracking shot
depicts object motion in a still image by adaptively blurring the background according to both foreground motion and scene structure in 3D.

Abstract

Panning and tracking shots are popular photography techniques in
which the camera tracks a moving object and keeps it at the same
position, resulting in an image where the moving foreground is
sharp but the background is blurred accordingly, creating an artistic
illustration of the foreground motion. Such shots however are hard
to capture even for professionals, especially when the foreground
motion is complex (e.g., non-linear motion trajectories).

In this work we propose a system to generate realistic, 3D-aware
tracking shots from consumer videos. We show how computer vi-
sion techniques such as segmentation and structure-from-motion
can be used to lower the barrier and help novice users create high
quality tracking shots that are physically plausible. We also intro-
duce a pseudo 3D approach for relative depth estimation to avoid
expensive 3D reconstruction for improved robustness and a wider
application range. We validate our system through extensive quan-
titative and qualitative evaluations.
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1 Introduction

Using intentional camera movement to introduce artistic blur in a
still image for motion depiction is a classic photography technique.
When done properly, the foreground object remains to be sharp in
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the final image while the background is blurred according to the
foreground motion and scene structure, creating a vivid illustration
of the intensive object motion in a single photograph.

This effect is traditionally called a panning shot, if the camera
moves horizontally and sweeps around the scene to follow the sub-
ject. However this is only limited to object motion that is parallel to
the image plane. For capturing more complex object motion that is
not parallel to the image plane, such as a running car shown in Fig-
ure 2, the camera has to move in the 3D space to track the object,
which we call a tracking shot1. Such techniques are known to be
hard to master, as the photographer has to carefully plan the shut-
ter speed, focal point and other camera settings beforehand, and
more importantly, follow the subject in a steady and smooth way in
the duration of the exposure, all requiring an accurate prediction of
the subject motion and good photography skill sets. In practice, it
often requires physically mounting the camera on the object itself
(see Figure 2). As a result, high quality tracking shots usually can
only be produced by professionals with dedicated equipment, and
are difficult to capture for consumers with low-end devices such as
cellphone cameras.

In this work, we aim to significantly lower the barrier of creating
tracking shots, and make it accessible for consumer-level photog-
raphy enthusiasts for the first time. Instead of directly capturing a
single image, our system allows the user to capture a short video
of the target object in motion, and employs modern computer vi-
sion techniques to assist the user to create a desired image through
simple interactions.

Specifically, given an input video, we first ask the user to select a
base frame as the targeted output, and mask out the moving objec-
t that the camera is supposed to track. The system then segments
the object in the video, tracks feature points in the background and
estimates the 3D scene. The system also estimates a dominant 3D
motion trajectory of the foreground object. Using the 3D infor-
mation from both the foreground and the background, we generate
dense spatially-varying blur kernels, which are then applied to the
base frame to render the final image.

Our system is built upon a combination of advanced computer vi-
sion techniques such as 3D reconstruction and video stabilization.
We first show that “physically correct” tracking shots can be gener-
ated by reconstructing the whole scene in 3D. However, 3D recon-
struction is known to be fragile and computational expensive, thus

1Tracking shot is also commonly used in videography for describing a
video sequence captured in this way, in this paper we use it to describe a
single photograph.
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Figure 2: Capturing a high quality tracking shot (left) usually re-
quires using dedicated professional equipment such as car camera
rigs (right). Note that the spatially-varying blur on the background
reflects both the foreground motion and the scene depth. Image
credits: Peter Adermark at Flickr.

has a limited application range. To overcome this limitation, we
further propose a pseudo 3D method to eliminate the requirement
of 3D reconstruction for improved robustness. We show that the
pseudo 3D approximation can lead to similar result quality, but has
a wider application range.

2 Related work

We briefly review the most related work in a few areas.

Artistic blur. Blur is a natural phenomenon in photographs caused
by object motion, camera shake or limited depth of field. Al-
though it is an active research area in computer vision for remov-
ing blur from images [Fergus et al. 2006; Cho and Lee 2009] and
videos [Cho et al. 2012], adding synthetic blur to an image is a
popular artistic choice for either motion illustration or highlighting
the main subject, and is supported by commercial software such as
the Blur Gallery in Photoshop.2 However, these tools only generate
blur kernels with simple profiles such as disk, Gaussian, or direc-
tional lines, which cannot serve our purpose of simulating tracking
shots.

For realistic motion blur simulation, Sung et al. [2002] introduced
visibility and shading functions in a spatio-temporal domain, while
Lin and Chang [2006] considered nonlinear intensity response of
cameras in their image formation model. Brostow and Essa [2001]
proposed to synthesize motion blur for stop motion animation from
image sequences, by integrating scene appearance to imitate long
camera exposure. This method however is limited to stop motion
data with a fixed camera position, and is hard to be extended to
videos captured by handheld cameras. Besides, all above systems
are designed for simulating motion blur of moving objects rather
than tracking shots.

3D reconstruction. Reconstructing 3D geometry of a rigid scene
from 2D images was first studied by Longuet-Higgins [1981]. Re-
search results of the following three decades in this area are well
documented in [Faugeras et al. 2001; Hartley and Zisserman 2003].
Modern structure-from-motion (SfM) algorithms can recover a 3D
rigid scene and camera motion simultaneously from tracked fea-
ture points in an image sequence, which we use for background 3D
reconstruction in our 3D approach.

Recently, non-rigid SfM techniques have been developed to recon-
struct time-varying shape and motion of dynamic objects from a
monocular video. The majority of these techniques represent a non-
rigid shape as a linear combination of some basis shapes [Bregler

2http://helpx.adobe.com/photoshop/using/blur-gallery.html

et al. 2000] and adopt the factorization-based approach introduced
by Tomasi and Kanade [1992]. This approach is further extended
to deal with articulated objects [Yan and Pollefeys 2005; Tresadern
and Reid 2005]. However, all these methods require a large number
of tracked feature trajectories, which are often not available in con-
sumer video. While the method presented by Park et al. [2010] can
reconstruct a single trajectory, it requires randomized camera mo-
tion and cannot be applied to a video clip. Ozden et al. [2004] ad-
dressed the problem of reconstructing 3D trajectories of moving ob-
jects from a monocular video using generic constraints for the anal-
ysis of dynamic scenes, with an emphasis on determining the rela-
tive motion scales among multiple independently-moving objects.
We address this problem by proposing a novel method that com-
bines trajectory triangulation [Avidan and Shashua 2000] [Kamin-
ski and Teicher 2004] and motion priors such as constant velocity
and/or acceleration.

It is well known that there are some fundamental issues that make
SfM challenging in certain cases, such as lack of parallax, cam-
era zooming, in-camera stabilization and rolling shutter [Liu et al.
2011]. To avoid these limitations, we further propose a pseudo 3D
approach for creating tracking shots without explicitly relying on
SfM.

Video stabilization. Videos captured by handheld cameras are of-
ten shaky and undirected. Video stabilization techniques can esti-
mate the original camera motion with predefined motion models,
and remove undesirable jitter to generate smooth camera paths that
are more pleasant to watch. Depending on the specific types of
camera motion models employed, existing video stabilization tech-
niques can be classified as 2D [Matsushita et al. 2005; Liu et al.
2014], 3D [Liu et al. 2009; Liu et al. 2012] and 2.5D [Liu et al.
2011; Liu et al. 2013] methods. 2D approaches are generally robust
but cannot handle scene parallax well. 3D methods are more ac-
curate, but are less robust and computationally expensive. 2.5D
approaches combine the advantages from both sides to be more
practical. Our pseudo 3D approach relies on video stabilization for
removing unwanted camera motion, as detailed in Section 4.

Image and video fusion. Our system is related to image and video
fusion, i.e., combining information from multiple images/videos to
create a single output. Agarwala et al. [2004] proposed an inter-
active Photomontage system for combining regions from multiple
images together using Graph Cuts optimization. Bhat et al. [2007]
proposed an approach to enhance videos using high resolution
photographs, but only for static scenes. Chaurasia et al. [2013]
introduced a depth-synthesis method for view interpolation and
image-based navigation. Sunkavalli et al. [2012] proposed an ap-
proach to generate a single high-quality still image called a snap-
shot from a short video clip. This system employs multi-image
super-resolution, and noise and blur reduction to enhance the visu-
al quality of a snapshot, and also provides a visual summarization
of activities in an input video. The DuctTake system [Rüegg et al.
2013] enables users to composite multiple takes of a scene into a
single video. However, none of the above systems is designed for
simulating tracking shots, the main goal of our system.

3 3D approach

As shown in the example in Figure 2, a visually convincing tracking
shot should meet two criteria:

• the background blur should be spatially-varying according to
the 3D scene geometry;

• the spatially-varying blur directions should be consistent with
the dominant foreground motion in 3D.



 ... ... 

⨁ ⨁

(a) Input sequence

(b) Object segmentation (d) 3D foreground motion

(c) 3D scene reconstruction

(e) Blur field

(f) Result

Figure 3: The flowchart of the proposed 3D method. Given the input video sequence (a), we first obtain a rough foreground mask (b), then
apply 3D scene reconstruction (c) and 3D foreground motion extraction (d). A spatially-vary blur field (e) is generated from (c) and (d). Final
tracking shot (f) is obtained by applying the blur field to the input base frame.

Both criteria need to be 3D-aware, which motivates us to first de-
sign an approach with explicit 3D reconstruction. The flowchart of
this approach is shown in Figure 3. Given an input video, we first
segment the foreground moving object using existing interactive so-
lutions (Figure 3b). For our application, we do not need accurate
segmentation masks, and a rough segmentation is often sufficien-
t for the following steps. We found the RotoBrush tool in Adobe
After Effects which is based on video SnapCut [Bai et al. 2009] fits
our need well, as it provides both quick scribble-based selection on
the keyframe and efficient automatic segmentation propagation.

Next, we extract a dominant, smooth 3D motion trajectory (Figure
3d) for the segmented foreground, along which the simulated vir-
tual camera should move to track the object (Section 3.1). We also
use the feature trajectories in the background to reconstruct the 3D
scene using the publicly available Voodoo SfM system 3, as shown
in Figure 3(c).

Finally, as detailed in Section 3.2, we simulate a virtual camera
that moves along the extracted 3D foreground motion trajectory.
By projecting the 3D background scene points into this camera,
we obtain sparse and spatially-varying blur kernels, as shown in
Figure 3(e). We then use edge-aware interpolation to create a dense
blur field from the sparse constraints, and apply it to the selected
base frame to render the final output, as shown in Figure 3(f). The
amount of blur is controlled by the duration of the exposure of the
virtual camera, which is adjustable as a user parameter.

3.1 Recovering 3D foreground motion trajectory

An important component of the proposed 3D approach is to recov-
er the dominant 3D foreground motion trajectory, which defines the
path of the virtual camera for object tracking. Since the moving
object has already been segmented in all frames, we simply con-
catenate the center of the object mask on each frame to obtain an
approximate 2D trajectory of the object. This trajectory is further
smoothed by a temporal Gaussian filter with a window size of 10
to reduce jitters. We then recover the 3D trajectory from its 2D
projection, which is related to the problem of non-rigid SfM.

The majority of the non-rigid SfM techniques, e.g. [Bregler et al.
2000; Yan and Pollefeys 2005], require a large number of long fea-
ture trajectories of related but different motions, e.g. trajectories of
different joints of an articulated object. Thus, they are not directly

3www.digilab.uni-hannover.de

applicable in our application, since there is only one approximate
2D trajectory of the moving foreground object.

We thus develop a new algorithm to address this issue. Specifical-
ly, we first move a sliding window in the temporal domain, which
cuts a 2D trajectory into short 2D sub-trajectories. We then recover
a 3D sub-trajectory from each 2D sub-trajectory, based on the as-
sumption that the 3D sub-trajectory is close to a linear motion as
the sub-trajectory is short, i.e., it roughly forms a line. The final
3D trajectory is computed as the mean of all the overlapping local
sub-trajectories, which can be far from linear.

We denote a 3D sub-trajectory by {Xi; 1 ≤ i ≤ K}, where i is
the frame index and Xi is the 3D Cartesian coordinates at the i-th
frame. K is the number of frames in the sub-trajectory. Each 3D
sub-trajectory is then recovered by minimizing the energy function:

El({Xi}, L) = λ1Ealgebr({Xi}) + λ2Eline({Xi}, L)

+ λ3Emotion({Xi}) + λ4Epers({Xi}). (1)

Here, L is an auxiliary variable representing a 3D line, which is fit
to the 3D sub-trajectory {Xi}. Ealgebr ,Eline,Emotion, andEpers
accounts for constraints derived from algebraic error, linear motion,
const motion velocity (or acceleration), and perspective effects, re-
spectively. λ1, λ2, λ3, and λ4 are weights for these constraints. We
alternatingly minimize El({Xi}, L) with respect to {Xi} and L.
In the following, we describe each constraint in detail.

Algebraic error constraint Suppose the corresponding 2D sub-
trajectory is {pi; 1 ≤ i ≤ K}. For convenience, pi are homoge-
neous coordinates. Also suppose that the camera matrix at the i-th
frame is Pi, which is estimated beforehand from static scene points
by standard SfM techniques. Then, Xi should be projected onto pi
by Pi, leading to the projection relation which is defined up to a
scale: [pi]×PiX̂i = 0, where X̂i = [X>i , 1]> is a homogeneous
coordinate representation of Xi. [·]× is the skew-symmetric ma-
trix form of the cross product [Hartley and Zisserman 2003], i.e.
a × b = [a]×b. After some derivation, we get the following rela-
tion: [pi]×Pi,1:3Xi ' [pi]×Pi,4, where Pi,1:3 is the matrix formed
by the first three columns of Pi, and Pi,4 is the fourth column of
Pi. Based on this relation, we define Ealgebr as:

Ealgebr({Xi}) =
∑
i

‖[pi]×Pi,1:3Xi − [pi]×Pi,4‖2. (2)



Linear motion constraint As mentioned earlier, we assume that
a 3D sub-trajectory is close to a linear motion, i.e., {Xi} rough-
ly forms a line L. We take the Plücker representation, where
a line passing through two 3D points with homogenous coordi-
nates A and B is represented by a 4 × 4 skew-symmetric matrix
L = AB�−BA�. This line is uniquely determined by a 6D vector
L = [l12, l13, l14, l23, l42, l34]

�, where lij is the (i, j)-th element
of the matrix L. We use Pi to denote the line projection matrix 4

of the i-th video frame. It is proved in [Avidan and Shashua 2000]
that

p�i PiL = 0. (3)

Avidan and Shashua [2000] solved L from at least five differen-
t camera positions with sufficient viewpoint changes, i.e. the row
vectors p�i Pi collected from all images are rank 5. However, in our
application, the camera moves smoothly and often provides insuf-
ficient constraints to solve the linear trajectory. In practice, we find
these vectors typically have rank 2 or 3.

Additionally, since Xi lies on the line L, it should satisfy the line
constraint:

L∗X̂i = 0, (4)

where L∗ is the dual skew-symmetric matrix of L, which can be
obtained from L directly by a simple rewriting:

l12 : l13 : l14 : l23 : l42 : l34 = l∗34 : l∗42 : l∗23 : l∗14 : l∗13 : l∗12.

By combining Equations 3 and 4, we define Eline as:

Eline({Xi}, L) =
∑
i

‖p�i PiL‖2 +
∑
i

‖L∗X̂i‖2. (5)

Constant velocity (or acceleration) constraint We assume the
foreground object to have near constant velocity or acceleration in
the duration of a 3D sub-trajectory. Since the video frames are cap-
tured with a constant time interval, these two constraints are simply
formulated as:

Xi −Xi−1 = Xi+1 −Xi, (6)
Xi+1 +Xi−1 − 2Xi = Xi+2 +Xi − 2Xi+1. (7)

Again, by combining Equations 6 and 7, we define Emotion as:

Emotion({Xi}) =
∑
i

‖Xi+1 +Xi−1 − 2Xi‖2 (8)

+
∑
i

‖Xi+2 + 3Xi − 3Xi+1 −Xi−1‖2.

Perspective constraint Under a perspective camera, the appar-
ent size of an object is inversely proportional to its depth. We use
D(X,P ) to denote the depth of a point X in the camera P . Specif-
ically, the principal axis direction m of a camera can be determined
from its projection matrix P as m = [P31, P32, P33]

�. Here Pij

is the (i, j)-th element of the 3 × 4 camera projection matrix P .
After normalizing m to a unit vector, the depth can be computed as
D(X,P ) = m�X , which is a linear function of X . This leads to
the following relation between any two frames i and j:

D(Xi, Pi) : D(Xj , Pj) = 1/Si : 1/Sj , (9)

where Si is the foreground segmentation size in the i-th frame.
Based on Equation 9, we define Epers as:

Epers({Xi}) =
∑

|i−j|>δ

∥∥∥∥
D(Xi, Pi)

Sj
− D(Xj , Pj)

Si

∥∥∥∥
2

, (10)

4The line projection matrix Pi can be easily obtained from its ordinary
3 × 4 projection matrix Pi. Please see page 198 of the textbook [Hartley
and Zisserman 2003].

w/o and w perspective constraint

w/o and w motion prior

w/o and w linear motion

Figure 4: Examples of reconstructed 3D foreground motion trajec-
tories (yellow curves). Green dots are background points. Each
row shows a comparison of without and with one of the constraints
in Equation (1) in solving the sub-trajectories.

where we set δ = 10 for robustness.

Implementation In our implementation, we set λ1 = λ2 = λ4 =

1 and λ3 = 10. Except the bi-quadric term ‖L∗X̂i‖2 in Equation
(5), all the other terms are quadratic functions of either L or {Xi}.
Thus, we iteratively estimate L and {Xi} by keeping one fixed at
a time. For initialization, we first estimate {Xi} by minimizing
Equation (1) without including Eline.

In all our experiments, we fix the length K of each sub-sequence to
20, and let neighboring sub-sequences overlap for 10 frames. Some
examples of the estimated foreground motion trajectory are provid-
ed in Figure 4. In each row, the left image is a sample frame of
the input video. The right image shows the 3D trajectory of the
foreground object (the yellow curve), the cameras, and some stat-
ic background points (the green dots). In each row, we evaluate
our method by turning off each constraint one by one. The results
suggest that every component is important to ensure reliable recon-
struction of the foreground motion.

3.2 Spatially-varying blur map

Once the foreground 3D motion trajectory is determined, we com-
bine it with the background structure to generate a spatially-varying
blur field. The final tracking shot is rendered by convolving the
sharp base video frame with this blur field.

To simulate a physically-correct tracking shot, we place a series of
virtual cameras along a 3D trajectory according to the foreground
motion and virtual exposure duration. Figure 5 shows an example.
Specifically, a virtual camera consists of an intrinsic matrix Kv , a
rotation matrix Rv and a camera center Cv . A projection matrix Pv

can be derived as Pv = Kv[Rv − Cv]. From the 3D reconstruc-
tion of the static background, we obtain the projection matrices of
the real camera, which also consist of intrinsics Kr , rotations Rr

and camera centers Cr . We borrow the real intrinsics for the virtual
cameras, i.e. Kv = Kr . The rotation matrices of the virtual cam-
eras are fixed, and set to be the same as the base frame at time t as
Rv = Rt

r . The camera centers Cv are equally sampled along a 3D
trajectory which passes through the camera center Ct

r at time t and



Figure 5: The virtual cameras sampled along a trajectory (red
curve) that passes through the camera center of the base frame and
has the same shape as the foreground 3D motion trajectory.

Figure 6: Generating spatially-varying blur kernels. Left: blur
kernels generated by projecting 3D scene points onto virtual cam-
eras. Right: final interpolated dense blur kernel map (sampled on
a regular grid for visualization).

has the same shape as the foreground 3D motion trajectory. The
spatial extent of these sampled camera centers is determined by the
virtual exposure duration, which the user controls with a sliderbar.

Next, we generate blur kernels by projecting 3D background points
using the virtual cameras. Specifically, for each reconstructed 3D
point in the background, we project it using the virtual cameras and
obtain a set of 2D projections. This set represents a blur kernel,
because it describes how each 3D point moves on the image plane
while the virtual camera moves during the exposure time. Each 3D
point yields a different set of 2D projections, so the resulting blur
kernels are spatially-varying as shown in Figure 6. In our system,
we use 20 virtual cameras to generate blur kernels.

Since feature points are sparse, we have only obtained sparsely-
distributed blur kernels and need to obtain a dense blur kernel map
from them. This is a very similar problem to interactive tonal ad-
justments from sparse user controls [Lischinski et al. 2006], and
can be achieved using edge-aware interpolation approaches which
respect strong appearance changes that are usually caused by depth
discontinuity. In our system we adopt the edge-aware optimization-
based propagation method [Levin et al. 2004] given its robustness
and high quality results. Finally, to keep the foreground object
sharp in the final result, we force the blur kernels inside the fore-
ground segmentation mask to be a delta function. Figure 6 shows
an example of a final dense blur kernel map.

4 Pseudo 3D approach

The 3D method described in Section 3 relies on both rigid and non-
rigid SfM, which are both computationally expensive and less re-
liable on consumer videos. In this section, we derive an approxi-
mation method that does not require recovering physically-correct
3D information. We refer this method as a pseudo 3D method,
given that we only hallucinate pseudo 3D information from an in-
put video. This method follows the same pipeline shown in Figure
3, the only difference is that both foreground and background 3D
reconstruction steps (Figure 3 (d) and (c)) are replaced with new
hallucination methods.

4.1 3D background hallucination

It is well known that the disparities of matched image features are
inversely proportional to their distances to the image plane [Kanade
and Okutomi 1994]. This gives us strong cues to hallucinate pseu-
do depths for feature tracks.While conventional 3D reconstruction
methods require calibrated cameras to compute depth from dispari-
ties, we use the relative disparities at different points to approximate
their relative depths without camera calibration, which is sufficient
for our application. This can be done by two simple steps presented
in the following.

Stabilization and relative disparities When the camera under-
goes only translational motion, the disparity of a feature point can
be simply measured by the length of its motion vector. However,
when the camera is also rotating, the motion consists of two com-
ponents caused by rotation and translation respectively. Ideally, we
need to minimize the rotational camera motion to measure the dis-
parities, which is possible through the 3D video stabilization [Liu
et al. 2009] or the gyroscope based stabilization [Karpenko et al.
2011]. Here, we want to achieve this goal without resorting to 3D
reconstruction or special sensors.

We apply a conventional 2D video stabilization method [Matsushita
et al. 2005], which models the motion between consecutive video
frames using a 2D homography. A homography only captures the
global camera motion to roughly align consecutive frames. While
this stabilization changes the absolute disparities, the relative dis-
parities at points of different depths remain alive after stabilization.
In other words, faraway points still have smaller disparities than
closer points, which allows us to hallucinate a pseudo 3D recon-
struction. Therefore, we compute disparities as the length of mo-
tion vectors on the stabilized video. We empirically find this simple
method works well for our application.

Depth hallucination After stabilizing the input video, we com-
pute a pseudo depth for each feature point based on its disparities
between frames. Suppose qti is the coordinates of the i-th feature
point on the t-th frame. Its overall disparity across different frames
is computed as Ti =

∑
t ‖q

t
i − qt−1

i ‖. Typically, this disparity is
quite noisy. We thus develop a method to spatially smooth the dis-
parity values of nearby tracks. We compute the average of all Ti as
T̄ , and estimate the relative disparity αi at qi by minimizing,

ET̄ ({αi}) =
∑
i

(‖αiT̄ − Ti‖2 + w
∑
j∈Ni

‖αi − αj‖2). (11)

The first term is a data fitting term that encourages the new disparity
αiT̄ to be close to the original measure Ti. The second term is a
spatial smoothness term encouraging nearby points to have similar
disparity values, under the assumption that they are likely to be on
the same object with similar depth. Ni refers to the neighboring
tracks of qi, defined in an edge-aware way by thresholding both the
spatial and the color distances. Two tracks are neighbors if their
spatial distance is always within 40 pixels and color difference is
always smaller than 0.1 in the RGB space (for pixel values within
[0, 1]). w is a balancing weight we fix at 0.5.

The quadratic energy function in Equation (11) is simply minimized
by a linear least square solver. The obtained αi contains less noise
and is spatially smoother than Ti. The depth of qi is computed
directly from αi as:

DB
i = 2(1/αi) ∗ β, (12)

where β is a scale value which we will discuss in Section 4.3.



(c) Swing example (d) foreground trajectory of (c)

(b) foreground trajectory of (a)(a) Carousel example

Figure 7: Hallucinated 3D foreground motion trajectories.

With the estimated depth, we can compute the pseudo 3D coordi-
nates of all the tracked scene points in the camera coordinate sys-
tem. Specifically, the 3D coordinates (Xi, Yi, Zi) of qi are:




Xi = Di ∗ (xi − cx)/f
Yi = Di ∗ (yi − cy)/f
Zi = Di

. (13)

Here, Di is the depth of qi, f is the camera focal length, (cx, cy)
is the principal point of camera intrinsics (fixed at the image center
in our system), and (xi, yi) is the image coordinates of qi in the
selected base frame.

4.2 3D motion trajectory hallucination

We rely only on the ‘Perspective Constraint’ proposed in the 3D
method to hallucinate the 3D motion trajectory of the foreground
object. Basically, we first seek to remove all the camera motions
from the input video. After that, we use the size of the segment-
ed foreground region to hallucinate the depth of the moving fore-
ground object.

Specifically, we align all the frames to the selected base frame by
homography transformations. The segmentation masks are trans-
formed by the same homographies. The depth of the foreground
object DF

t at frame t is simply set to be inversely proportional to
its segmentation size at that frame, i.e.

DF
t =

γ

St
, (14)

where St is the size of foreground segmentation at frame t, γ is a
scale parameter, which will be discussed in Section 4.3. The 3D po-
sition of the foreground object is computed according to Equation
(13) from its depth. Figure 7 shows two examples of the hallucinat-
ed trajectory.

4.3 Combining pseudo 3D

The foreground and background 3D information is computed using
two different methods and is often inconsistent. We thus need to
adjust the two scalars β in Equation (12) and γ in Equation (14)
to minimize this inconsistency. In practice, we fix γ to 1 and only
adjust β. Effectively, β controls how far the scene points are from
the camera, which determines the size of the generated blur kernels.
So effectively, this parameter acts similar to the virtual exposure
time in our 3D method. For example, Figure 8 shows the sparse
blur kernels of one example with different settings of β. From left
to right, these images correspond to β = 0.1, 1, and 10 respectively.

Determining exactly how much blur should be synthesized on each
example could be subjective. In our user interface we allow the
user to adjust β within [0.1, 10] using a sliderbar. This provides the
flexibility to synthesize different amount of blur, mimicing different
exposure duration in real tracking shots. Once β is determined,
we use the method described in Section 3.2 to synthesize the final
result.

(a) β = 0.1 (b) β = 1 (c) β = 10

Figure 8: The scale value β in Equation (12) controls the size of
blur kernels. A smaller β leads to a larger amount of blur.

5 Experimental results

Implementation details We implemented our system using C++.
We run our method on an Intel i7 3.2GHZ Quad-Core machine with
8G RAM. Input videos typically contain 80-120 frames. For 3D
background reconstruction, the Voodoo SfM system normally takes
about 3-5 minutes for a 10 second video. Foreground segmentation
using the RotoBrush tool takes 2-3 minutes. Foreground path re-
covery takes less than a second. Generating sparse blur kernels is
also very fast, and dense kernel interpolation takes around 3 sec-
onds. For the pseudo 3D method, background reconstruction takes
about 10 seconds, mainly on the OpenCV KLT tracker. The fore-
ground trajectory recovery takes about 2 seconds.

Note that although our systems relies on two third-party packages
for foreground segmentation and background SfM, both the Roto-
Brush and Voodoo system are publicly available and have been used
in various recent research systems as building blocks. We used both
systems with their default parameters without any special tweaking.
The RotoBrush system requires user interaction, however since our
application does not require highly accurate foreground masks, we
found that in general the user only needs to apply occasional cor-
rections on one or two frames other than segmenting the base frame
for most examples shown in the paper.

Representative results Figure 9 shows a few results generated
from the 3D method and the pseudo 3D method. For each example,
the base frame is shown on the left, and the simulated tracking shot
is shown on the right. The input videos include both slow and fast,
linear and non-linear foreground motions. The results show that
the spatially-varying blur generated by both methods reflects the
correct scene geometry and the foreground object motion. Please
refer to the project page5 for more results.

6 Comparison with Alternative Approaches

Given that the final effect our system produces is the blurred back-
ground, one may wonder if some alternative simple solutions can be
used to generate good results. We first introduce a naı̈ve 2D method
and a manual tool as two alternative approaches. Later, we compare
them with our method by a quantitative evaluation on synthetic data
and a user study with real images.

5http://www.liushuaicheng.org/trackcam/index.html



Figure 9: Example tracking shots generated by our system. The first and third columns are base frames. The second and fourth columns are
results. The first two rows are generated by the 3D method. The last two rows are produced by the pseudo 3D method.

(a) frame1 (b) frame2

(c) align by centroid (d) align by homography (e) align by ARAP warping

Figure 10: Three alignment methods of the naive 2D approach.

6.1 A naı̈ve 2D method

A straightforward idea is to align the foreground object first, then
compute the optical flow in the background region, and generate the
motion blur kernels according to the smoothed flow field. Here we
explore the effectiveness of this naı̈ve 2D approach.

We manually mark control points on the foreground throughout
the video, since automatical feature tracking (e.g. KLT) is brit-
tle for non-rigid and fast-moving objects. The red dots in Fig-
ure 10(a) and (b) show examples of the control points. We use
these control points to align the foreground through three motion
models: (1) a translation computed from the centroid only; (2) a
single homography computed from all control points; and (3) an
as-rigid-as-possible(ARAP) warping [Igarashi et al. 2005]. Effec-
tively, we stabilize the foreground by adopting single homography-
based video stabilization [Matsushita et al. 2005] for translation-

(a) (b) (c)

Figure 11: Tracking shot results by the naı̈ve 2D method. (a) align
by a translation. (b) align by a single homography. (c) align by an
ARAP warping.

and homography-based alignment, and bundled paths video stabi-
lization [Liu et al. 2013] for ARAP alignment. The results of the
three alignment methods are shown in Figure 10(c),(d),(e). Note
that since the foreground and background do not reside in a same
plane, a single homography would introduce large displacement on
the background, which may cause difficulty in optical flow com-
putation. We calculate optical flow [Liu 2009] between neighbor-
ing frames on the ‘foreground-stabilized’ video. We concatenate
flow vectors around the base frame to form blur kernels. Figure 11
shows the results. Please compare the corresponding results gen-
erated by our method in Figure 1 and in the supplementary video,
which suggest that our method generates more visually appealing
results. This is not surprising because stabilizing dynamic fore-
ground is difficult, which makes the optical flow calculation on the
background unreliable.



Figure 12: Our manual tool to create tracking-shots. The yellow
curves are blur traces manually drawn by the user.

6.2 The manual tool

There are commercial software packages for manually generating
artistic blur such as Photoshop Blur Gallery and Google Analog
Efex Pro 2. They are however limited either to spatially invariant
blur, or a small number of user-specified blur kernels. Thus, they
do not provide full functionality for creating tracking shots where
the blur is spatially-varying and needs to be carefully and densely
specified.

We thus developed an interactive tool that allows the user to cre-
ate more sophisticated blur by manually specifying curve-based
spatially-varying blur traces. Our tool also provides live preview
whenever the user adds, modifies, or removes a blur trace. We in-
terpolate these traces using the method proposed in Section 3.2 to
render a tracking shot. For a fair comparison, we do not allow the
users to specify blur kernels inside the foreground mask that is used
in our methods, to ensure that the foreground object has the same
degree of sharpness in all results. Figure 12 shows some exam-
ples with manually specified blur traces using this UI. On average
it takes about 3 ∼ 5 minutes for users to create a tracking shot using
this tool. Please refer to the supplementary video for a live demon-
stration of this tool.

6.3 Quantitative evaluation on synthetic data

Synthetic data We create several synthetic examples in Maya
and use them to conduct a quantitative evaluation. Figure 13 shows
one such example. We put a moving foreground object in a vir-
tual 3D environment, and render the scene twice by two different
cameras: a hand-held camera (green in Figure 13 (a)) and a track-
ing camera (white in Figure 13 (a)). The hand-held camera fol-
lows a shaky and irregular motion, which yields a video sequence
as the input to our system. The tracking camera has the same mo-
tion trajectory as the moving foreground, and is used to render the
ground-truth blur kernels and tracking shot. Both cameras share a
common base frame, as shown in Figure 13 (b). Figure 13 (c) shows
the ground truth depth map of the base frame. We sample dense 3D
points from this depth map, and project them to the tracking camera
to generate the dense blur kernels as shown in Figure 13 (d). Final-
ly, the ground-truth blur kernels are used to blur the background of
the base frame, which is combined with the segmented foreground
in the base frame to generate the ground-truth tracking shot. We
synthesize six examples as shown in Figure14, please refer to the
supplementary video for these examples.

Evaluation For each example, we compute the results of our 3D
method, pseudo 3D method, the naı̈ve 2D approach, and the manual
approach (with two different users). Some of the results are shown
in Figure 15.We then compare these results against the ground-
truth in terms of (1) blur kernel similarity, measured by Normalized
Cross-Correlation (NCC); and (2) final image similarity, measured
by both PSNR and SSIM [Wang et al. 2004]. Table 1 to 2 show
the quantitative results of different methods, which suggest that our
3D and pseudo-3D methods generate consistently better results than
the alternative choices. Although the manual tool generates better
results than the naı̈ve 2D approach, it is still significantly inferior

(a) synthetic scene (b) base frame

(c) ground-truth dense depth (d) ground-truth blur kernels

Figure 13: Synthetic examples for quantitative evaluations.

Table 1: Blur kernels similarity (NCC) of different method-
s (columns) on difference synthetic examples (rows) against the
ground-truth.

NCC 3D pseudo naive subject A subject B
swing 0.63 0.59 0.27 0.47 0.44
carousel 0.73 0.68 0.30 0.59 0.35
run1 0.54 0.56 0.31 0.41 0.32
run2 0.58 0.59 0.26 0.42 0.34
car1 0.66 0.67 0.29 0.51 0.43
car2 0.70 0.68 0.22 0.44 0.39

to our approaches. Note that our methods require much less us-
er effort; and furthermore, the required user input is more intuitive
(i.e. foreground segmentation), compared with drawing depth- and
motion-dependent blur traces.

3D vs. pseudo 3D The quantitative results show that our 3D method
and pseudo 3D method generate very similar results in terms of
both the blur kernel similarity and final image similarity. In these
synthetic examples, the 3D method generates better results for the
‘swing’ and ‘carousel’ example, which contain significantly non-
linear foreground motion. On the other hand, the pseudo 3D ap-
proach produces slightly better numerical results on other examples
where the foreground motion is closer to straight lines. However,
the differences are too small to be visually noticeable, as shown in
Figure 15. More examples are in the supplementary material.

Table 2: Image similarity (top: PNSR, bottom: SSIM) of different
methods (columns) on difference synthetic examples (rows) against
the ground-truth.

3D pseudo naive subject A subject B

swing 33.36 32.28 22.54 26.40 25.07
0.964 0.959 0.807 0.858 0.877

carousel 34.12 31.29 25.26 27.80 26.48
0.985 0.969 0.894 0.928 0.882

run1 32.01 34.32 28.49 27.41 26.57
0.975 0.976 0.929 0.919 0.899

run2 34.74 35.64 27.46 28.27 26.96
0.986 0.978 0.927 0.933 0.913

car1 30.35 32.53 23.37 28.14 25.22
0.948 0.945 0.730 0.884 0.818

car2 31.55 29.48 21.41 22.07 21.52
0.939 0.923 0.732 0.776 0.740



 3D method    pseudo 3D method    ground-truth   naive 2D method    by subject A    by subject B

33.36/0.964 32.28/0.959 22.54/0.807 26.40/0.858 25.07/0.877 

34.12/0.985 31.29/0.969 25.26/0.894 27.80/0.928 26.48/0.882 

30.35/0.948 32.53/0.945 23.37/0.730 28.14/0.884 25.22/0.818 

Figure 15: Comparisons on the synthetic data set. The PSNR/SSIM values are labeled on the top-left corner of images.

Figure 14: Thumbnails of the synthetic examples: swing, carousel,
run1, run2, car1 and car2.

6.4 A user study

Since the quantitative evaluation does not necessarily reflects the
visual quality of the result, we further design a user study to eval-
uate our methods. We only compare our methods with the manual
interactive tool, because the naı̈ve 2D method is clearly inferior to
the other methods as shown in Section 6.3.

Data preparation We invited two subjects to manually create
tracking shots using our manual tool for 20 real images. The first
subject A is a photographer with rich experience on image editing,
sketching and drawing in Photoshop. He is also familiar with depth
and blur. The second subject B is a photography hobbyist with no
background knowledge on 3D vision and no experience on painting
and sketching. Before starting the user study, we gave each subject
a training session of this interactive tool, and let them practice on
multiple images until they felt comfortable. After training, the sub-
jects were able to generate one tracking shot in the average time of
7 minutes, after watching the input video several times.

We also taught a third subject (a graduate student in the CS depart-
ment) on how to use our system, and asked him to generate results
of our methods. Besides object segmentation which is done inter-
actively in After Effects, the only user input that was allowed in
our approach is to adjust the amount of blur using a slide bar. A-
mong the 20 results, 10 of them were created using the 3D method,
the other 10 using the Pseudo 3D approach. Figure 16 shows two
examples in the user study data.

Perceptual comparisons We invited another 30 viewers to eval-
uate the quality of the results generated by our system and by the
manual tool. Before starting the evaluation, we gave each view-
er a short video tutorial about tracking/panning shots, which also

Table 3: User study results. The numbers are the percentages of
viewers who favored our results over those created by subjects.

subject A subject B
3D method 61.8% 90.6%

Pseudo 3D method 67.7% 91.2%

includes various successful and failure examples we found online.
For each viewer and for each example, we randomly sampled one
manually created shot, and put it side-by-side with our result for a
pairwise comparison. We also show the original frame at the top
as a reference. The viewer was asked to pick one result that looks
more natural and visually appealing.

The evaluation is summarized in Table 3. The majority of viewer-
s favored our results over manually-created ones, especially those
created by subject B (∼ 90%). The ratio drops down to about
∼ 65% for subject A, which is as expected given he is more ex-
perienced on image editing. These results suggest that our system
could be more helpful for people with limited 3D knowledge and
drawing skills. Note that with more advanced tools, more practicing
and more user time, the manually-created results could be potential-
ly improved. Nevertheless the user study suggests that our system
is already helpful for the vast majority of consumer-level users who
cannot afford the effort and time for mastering the manual tools.

6.5 Discussion

Overall, none of these alternative approaches produce the same
quality tracking shots as our system does, the visual artifacts in
their results are obvious. The naı̈ve 2D method does not work, be-
cause stabilizing the foreground is challenging, especially for high-
ly dynamic objects. Furthermore, the optical flow on background is
often inaccurate due to large displacement. For the manual tool, the
two subjects provided important feedback to us. They uniformly
felt that drawing 2D blur kernels to convey 3D information is non-
intuitive and requires constant thinking. This task became harder
when the foreground object is moving on a non-linear path. They
also felt uncertain about how large the blur traces should be and
how much variation they should have from region to region. All
these comments suggest that simulating tracking shots without us-
ing dedicated tools like our system is in general hard for users at
any skill level.

It is worth emphasizing that our system is capable of rendering
tracking shots for deforming objects that are impossible to capture
by a physical camera. If the target object is highly dynamic, such



(a) original base frame (b) by subject B (11.8%) (c) by subject A (29.4%) (d) our 3D result

(e) original base frame (f) by subject B (23.5%) (g) by subject A (47.1%) (h) our pseudo 3D result
Figure 16: Two examples in the user study. The numbers in (b, c, f, g) are the percentages of viewers that favored these results over ours.

Figure 17: Two failure examples. Top: our method generates ex-
cessively large blur at the faraway sea region, due to the lack of
features in this region. Bottom: the camera quickly rotates around
the object, causing a failure of both 3D reconstruction and non-
rigid SfM. Note that the tracking direction is inconsistant with ob-
ject motion in this example. Please refer to the video for these two
examples.

as a running person (see Figure 9), then a long exposure time of a
physical camera will lead to severe motion blur on the person’s leg
region no matter how well it tracks the person’s body, which may
not be desirable. In our system, since we process foreground and
background regions separately, we can simulate a much shorter ex-
posure time for the foreground alone, producing sharp foreground
regions, which is similar to the bullet time effect as shown in many
of our examples. This is clearly preferable in many cases. Howev-
er, sometimes the user may also want to introduce some foreground
blur, and not allowing it could be a disadvantage. Our system could
potentially be extended to simulate additional foreground motion
blur, by aligning and averaging the segmented foreground object in
multiple frames around the reference one. We leave this additional
step as future work.

7 Limitations

We find that a uniform spatial distribution of static feature points
is crucial to generating successful results, given that the final dense
blur kernels are interpolated from the sparse ones located at the
feature points. A typical failure case is shown on the top of Figure
17. In this example, all the static feature points are on the nearby
corals, and the faraway sea region on the top-right corner are not
covered. Thus, the depth of the sea region cannot be estimated
and the blur kernel interpolation will extend excessively large blur

Figure 18: Failure cases. Frames contain large moving objects.

kernels from the nearby coral region to the faraway sea region. In
general, any textureless region with large depth differences from
its surrounding regions will suffer from this problem. As future
work we plan to provide additional UI controls to allow the user to
specify the amount of blur in a specific region, and use it as a hard
constraint to produce correct results in this case.

Our system also has difficulty to deal with videos that contain large,
quick camera rotation that centered at the target object, such as the
bottom example in Figure 17. The quick camera rotation around
the object directly leads to the failure of 3D scene reconstruction,
also the failure of our non-rigid SfM. While the actress walks from
right to left, the reconstructed 3D foreground motion trajectory is
nearly a line that is perpendicular to the image plane, resulting in a
final result that is inconsistent with the object motion. Both 3D and
pseudo 3D methods fail on this example.

Our system may also fail in the case where the scene is crowded
and the frames are occupied by large moving objects. Three such
examples are shown in Figure 18. This is a challenging case for all
previous video stabilization and 3D reconstruction methods.

8 Conclusion

We develop a system for generating tracking shots from a shot video
clip captured by a handheld camera. We show that by combin-
ing advanced computer vision techniques such as segmentation and
structure-from-motion, our system can obtain realistic, 3D-aware
tracking shots. We further studied how to relax 3D reconstruction to
3D hallucination for improved robustness. Quantitative evaluation
and user study results show that our system is capable of generating
high quality tracking shots that are hard to achieve otherwise.
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