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Abstract— In this paper, we extend image stitching to video
stitching for videos that are captured for the same scene simulta-
neously by multiple moving cameras. In practice, videos captured
under this circumstance often appear shaky. Directly applying
image stitching methods for shaking videos often suffers from
strong spatial and temporal artifacts. To solve this problem,
we propose a unified framework in which video stitching and
stabilization are performed jointly. Specifically, our system takes
several overlapping videos as inputs. We estimate both inter
motions (between different videos) and intra motions (between
neighboring frames within a video). Then, we solve an optimal
virtual 2D camera path from all original paths. An enlarged
field of view along the virtual path is finally obtained by a
space-temporal optimization that takes both inter and intra
motions into consideration. Two important components of this
optimization are that: 1) a grid-based tracking method is
designed for an improved robustness, which produces features
that are distributed evenly within and across multiple views and
2) a mesh-based motion model is adopted for the handling
of the scene parallax. Some experimental results are provided
to demonstrate the effectiveness of our approach on various
consumer-level videos and a Plugin, named “Video Stitcher” is
developed at Adobe After Effects CC2015 to show the processed
videos.

Index Terms— Video stitching, video stabilization, bundled
paths, space-temporal optimization.

I. INTRODUCTION

IMAGES captured by a single device, such as a cell-phone,
a DV or a tablet, often have a limited field of view.

Image stitching can enlarge the view angle by combining
contents from several overlapping images captured by multiple
cameras, which is often referred to as panorama [1] or image
mosaics [2]. In this work, we extend image stitching to video
stitching for videos that are captured simultaneously for the
same scene by multiple moving cameras.
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One challenge in video stitching under this circumstance is
that videos captured by moving cameras often appear shaky.
As a result, directly applying image stitching methods to shaky
video frames in the frame-by-frame fashion would suffer from
two drawbacks. First, strong perspective distortions would
be resulted because of the shakiness in the captured videos.
Second, the frame-by-frame stitching does not consider the
temporal smoothness within the videos so that jitters would
become visible. The existing solutions to this problem largely
rely on additional hardware and require to constrain the
movement between cameras. For instance, FullView camera
type FC-110 (http://www.fullview.com/products.html) assem-
bles 10 CCD cameras around its optical center into a glass
container; GoPano (http://www.gopano.com/) mounts a spher-
ical lens in front of a cell-phone camera for enlarged view
angles; Perazzi et al. [3] proposed a method for panoramic
video capturing through an unstructured camera array; and
Li et al. [4] and Jiang and Gu [5] proposed to stitch
videos under static cameras. In general, these hardware-based
solutions are expensive and inconvenient.
In this work, we propose an all-software approach to jointly

stitch and stabilize shaky videos captured by multiple moving
cameras, thus creating a stablized video with an enlarged
view angle. Fig. 1 illustrates two scenarios: (1) three per-
sons are capturing a scene using cell-phones (Fig. 1(a)) and
(2) videos are captured by two micro UAVs (Fig. 1(b)),
whereas Fig. 1(c) and (d) show two stitched results
corresponding to (a) and (b), respectively.
This is a kind of collaborative capturing that has already

been explored in photography, including CamSwarm [6]
(Photograph) and PanoSwarm [7] (Panorama imaging).
We expect that our collaborative video capturing can share the
same benefits. This is also related to robots/drones co-vision
where some works have been done, e.g., dense 3D reconstruc-
tion from multiple cameras [8] and collaborative visual SLAM
(CoSLAM) [9].
The key in video stitching is how to handle camera motions.

We can stitch images of different views at every individ-
ual frame using various image stitching methods [10]–[12].
However, as aforementioned, the results tend to suffer from
both spatial and temporal artifacts. On the other hand, video
stabilization methods (e.g., [13]–[16]) can remove jittery and
shaky motions. However, these methods cannot be extended
directly for stabilizing a stitched video, e.g., perspective
distortions in stitched frames, motion estimation under an
enlarged view angle, and large motion diversities within a
stitched frame are some major factors for the unsatisfactory
result.
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Fig. 1. Our system settings: videos are captured by moving devices. Our
system produces a stitched and stablized video with an enlarged view angle.
http://www.liushuaicheng.org/TIP/VideoStitching2016/videostitching.mp4.

To solve the problem, we formulate video stitching and
stabilization into a unified framework such that spatial align-
ment and temporal stability can be achieved simultaneously.
We recognize that image features form the basis for both
stitching and stabilization. To achieve a high-quality perfor-
mance, we would like to have rich features to cover all frames
densely and uniformly within and across views. In summary,
we are facing three challenges: (1) detection of rich image
features to facilitate a joint stitching and stabilization,
(2) stitched results being free from spatial artifacts
(e.g., misalignments and distortions), and (3) keeping the
temporal consistency in stitched results (i.e., free from jitters
and shakiness).
With regards to the image features, we design a grid-based

tracker. Different from traditional approaches that adopt a
global threshold [17] over the whole frame, we divide each
frame into regular grids and a local threshold is adopted for
each grid. In this way, we can generate more features as
compared with a global threshold, especially for textureless
regions [18]. Then, the detected features are pruned for a
balanced distribution before the KLT tracking [19]. Next, we
extend the tracking to multiple views by introducing a plane-
based homography-RANSAC. As a result, the features are

scattered densely and uniformly not only within a single view
but also across different views, which lays a solid foundation
for subsequent steps.
As for the frame stitching, we adopt mesh-based warps [20],

because they can handle spatially-variant motions caused by
scene depth and parallax, thus producing high-quality stitching
results. Specifically, we adopt the warp-based method in [10]
that has been widely used for image stitching, with emphasis
given to the manipulation of mesh structures [11], [21].
To enforce the temporal consistency, we choose the bundled-

paths stabilization approach [16]. For video stitching, we
need to modify it in order to take multiple inputs such that
all videos can be smoothed simultaneously to a mutually-
stabilized position with respect to stitching constraints. The
bundled-paths approach is built upon mesh warps for motion
estimation. Likewise, the mesh warps can represent spatially-
variant motions, leading to high-quality stabilization results.
More importantly, as both stitching and stabilization adopt
the mesh structure, the involved constraints can be easily
manipulated for a joint optimization.
The main contribution of this paper is a unified framework

that facilitates the join video stitching and stabilization. To the
best of our knowledge, this is the first framework that achieves
spatial alignment and temporal stability simultaneously on the
videos captured by multiple cameras that can move freely.
Furthermore, our approach enjoys a higher efficiency and
robustness due to the fast and rich feature tracking method and
the 2D motion model. Finally, the mesh-based motion estima-
tion enables us to handle scenes with parallax effectively.
The rest of this paper is organized as follows: Sec. II reviews

the related works. Sec. III presents our method in detail.
Discussions are provided in Sec. IV. Results are presented
in Sec. V. Some conclusions are finally drawn in Sec. VI.

II. RELATED WORKS

A. Video Stabilization

According to motion models, video stabilization methods
can be categorized as 3D, 2.5D, and 2D approaches.
The 3D methods estimate camera motions in the 3D space

for stabilization [22]. To this end, Liu et al. developed a 3D
stabilization system based on the full 3D reconstruction [15];
a depth camera [23] and a light field camera [24] were
attempted for the 3D motion recovery. To avoid the expen-
sive and brittle 3D reconstruction, the 2.5D methods utilize
partial 3D information embedded in long feature tracks for
stabilization [25], [26]. In general, 3D and 2.5D methods are
not robust enough for consumer videos as they both require
long feature tracks, which are hard to obtain in the presence
of quick camera motions (e.g., quick rotations).
The 2D methods estimate a series of 2D linear transforma-

tions (e.g., affines or homographies) between adjacent frames
and smooth these transformations for stabilization [13], [27].
Some priors are incorporated during the smoothing, such
as polynomial curves [28] and cinematographical rules [14].
Some methods focus on the correction of rolling shutter
effects [18], [29], while Liu et al. estimate the bundled camera
paths by a mesh-based motion model for spatially-variant
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Fig. 2. Pipeline of our system: (a) input videos that are captured by different video recorders, (b) auto video synchronization, (c) the core of our system -
joint optimization of stitching and stabilization, and (d) the final result.

motion representation [16]. In our work, the bundled-paths
approach is adopted for stabilization.

B. Image Stitching

Early image stitching methods adopt a single homography
for image alignment [1], [30]. Then, Gao et al. proposed to
use two homographies for image stitching when the scene
could be modeled roughly by two planes (e.g., the ground
and the sky) [31]. In general, there are two kinds of stitch-
ing strategies: seam-driven [12], [32], [33] and warp-based
[10], [11], [21]. In the seam-driven category, Agarwala et al.
proposed the photomontage that composites a photograph by
cutting and joining multiple photographes seamlessly [33],
while Zhang and Liu found a homography that leads to a
minimum energy seam to stitch large-parallax images [12].
In the warp-based category, Zaragoza et al. proposed an as-
projective-as-possible (APAP) mesh deformation that warps
images by following a global projective transformation and
allows local non-projective deviations [21], while Chang et al.
proposed a shape-preserving half-projective (SPHP) method
to correct distortions in non-overlapping regions [11]. In our
work, we adopt mesh warps for view alignment.

C. Video Mosaics and Stitching

For monocular video input, early methods [34], [35] found
image mosaics from a single video and represent the video
by mosaics for the efficient indexing. For multiple video
inputs, Jiang et al. proposed an approach to stitch videos
using content-preserving warps [5], Li et al. applied double
seam selection to achieve efficient structure deformation [4],
Hamza et al. stabilized panoramic videos captured on portable
platforms [36], and Perazzi et al. calculated optical flow to
warp different views [3]. However, these methods are either
applicable only for static cameras or assembled with fixed rigs
for portable capturing. On the other hand, El et al. [37], [38]
and Lin et al. [39] proposed methods to stitch videos cap-
tured by individual moving cameras. However, El et al.
mainly focused on the frame-based stitching without consid-
ering the temporal smoothness explicitly, whereas Lin et al.
proposed a video stitching method that relies on the dense

3D reconstruction whose computation is very complicated.
In contrast, our method can simultaneously stitch and stabilize
videos efficiently, creating videos with not only enlarged view
angles but also stabilized motions.

III. OUR METHOD

Figure 2 shows the pipeline of our framework. The first
step of our algorithm is to capture multiple videos as the
system’s inputs by cameras that can move at a certain degree
of freedom. Here, we enforce a rough synchronization, i.e.,
all cameras begin to record approaximately at the same time.
In reality, the difference is usually within a fraction of one
second, which is well acceptable for many cases, even for
some dynamic scenes.
The second step is to do some pre-processing on the inputs

to unify spatial and temporal resolutions. In our implementa-
tion, we choose the video with the smallest spatial resolution
as the target, and the rest is resized to the target resolution.
Similarly, we adjust the frame-rates of videos to the slowest
one among all captured videos. The choice of the lowest values
can avoid spatial up-sampling and temporal interpolation.
The third step is the joint optimization of video stitching

and stabilization, which is the core of our system. At this
step, we estimate two types of motions to bring into the
optimization, i.e., inter motions (motions at the corresponding
frames between different videos) and intra motions (motions
within a video between neighboring frames). We denote
the intra motions as Cn(t), with t standing for the time
and n denoting the view; whereas the inter motions are
denoted as Tn,m(t). (e.g., motion at time t between the first
and second footages is T1,2(t)). We adopt the bundled-paths
approach [16] as the baseline for stabilization. The uniqueness
of our approach is that not only intra motions but also
inter motions are considered during the optimization. The
optimization mainly consists of three components: (1) a fast
and rich feature tracking, (2) a mutually optimal camera path
generation, and (3) a joint stitching and stabilization. The first
component provides high-quality features for robust inter and
intra motion estimations. The second one generates an optimal
camera path lying among all the original paths to suppress
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Fig. 3. The first row shows frames by naive feature detection method using
FAST feature detector and KLT tracker. The second row shows frames by
our grid-based uniform feature tracking strategy. It is noted that the feature
distribution by our new tracker is more even.

perspective distortions. The third one uses the optimal camera
path to carry out a joint stitching and stabilization.

A. Fast and Rich Feature Tracking

In this section, we present the details regarding the feature
tracking. Note that the features’ quality plays an important
role for both stabilization and stitching, because mesh-based
motion estimation heavily relies on these features [16].
We believe that high-quality features should be detected to
cover the frame densely and uniformly, and they should
also last continuously in as many frames as possible. In the
following, we first present the grid-based tracker for the case
of a monocular video. Then, we upgrade it by the plane-based
RANSAC for the case of multiple videos.

1) Grid-Based Feature Detection: Our grid-based tracker
is built upon the FAST feature detector [40] and KLT
tracker [19]. Traditionally, a global threshold often produces
fewer features in poorly textured areas (e.g., the ground and the
sky as shown in the top row of Fig. 3), because the threshold
is biased by other highly textured regions [18]. Therefore, we
need to adopt local thresholds for different regions to pull up
more features. The bottom row of Fig. 3 shows our grid-based
detection results.
Specifically, we divide a single frame into 5×5 regular grids

and for each grid we use an independent FAST feature detec-
tor. Each detector will automatically choose an appropriate
threshold for a local grid [17]. Moreover, the threshold of each
detector is updated dynamically during tracking, based on the
number of detected features. As a result, the thresholds vary
both spatially and temporally according to the scene contents.
Sometimes, rich texture regions may gather too many features
(e.g., trees in the examples of Fig. 3’s first row). Thus, we
need to prune the features by abandoning some of them based
on their FAST scores. On the other hand, some flat areas, such
as the sky or the lake, may not be able to fully accommodate
as many features as the ground, because these regions have
almost zero gradients.
By generating more features for low texture regions through

adapting local thresholds and removing some features for
rich texture areas, we can detect features that are distributed
uniformly. Then, we send them into the KLT tracker. Note
that features of a frame come from two sources: tracked

Fig. 4. Integration of feature tracking and feature matching. Without loss
of generality, we assume that there are only two visible planes A and B
in the scene. While there are only matches of plane A at frame t − 1, we
obtain matches of both planes at frame t using tracking-matching combined
method. Previously, matches on the plane B will be lost. Now, we can retain
all matches from multiple planes.

features from previous frames and newly-detected features at
the current frame. We run the grid-based feature detection only
when the number of tracked features drops below a threshold
(empirically set to 800).

2) Integrating Feature Tracking With Feature Matching:
Feature tracking is usually applied for a single video.
Normally, we cannot apply feature tracking between different
views due to large view angle diversities (e.g., large scale
differences). Feature matching works well under this situation.
On the other hand, homography-based RANSAC is often
adopted to reject outliers after feature matching. However, a
single homography-RANSAC can only retain matches residing
on a single plane. For a scene consisting of multiple planes
(e.g., buildings and the ground), the estimation is only accurate
for the dominant plane region that occupies the largest area.
To solve this problem, we propose to integrate the feature

tracking with the feature matching, which can produce rich
feature correspondences between two videos with multiple
planes. Specifically, at frame t − 1 in Fig. 4, plane A is
the dominant plane because potentially there are three feature
matches in plane A but only two feature matches in plane B.
Thus, if we use homography H (t−1), only matches of plane A
can pass homography-RANSAC. Next, all features will be
tracked from frame t−1 to frame t , including matched features
of plane A and un-matched features of plane B. Now, we
only apply feature matching to un-matched features at frame t .
This time, the plane B becomes the dominant plane. Thus, we
get homography H (t) and matches of plane B are retained
(frame t of Fig. 4).
As a result, we obtain feature correspondences of all visible

planes at each frame. This strategy, on one hand, fulfills the
feature matching with the uniform distribution to facilitate a
high-quality inter motion estimation; on the other hand, also
increases the speed because matches can be tracked from
the adjacent frame pair so that we no longer need to match
all features exising in the current frame pair. Fig. 5 gives
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Fig. 5. We show two examples to illustrate the matched features. In each
example, the first row shows feature matching result by single homography
based RANSAC, and the second by our tracking-matching combined strategy.
The red region and the yellow region indicate two distinct planes in the scene.
Traditional matching method can only generate feature correspondences of a
single plane, while our matching method can keep matches of multiple planes.

a visual comparison between the traditional matching method
and our tracking-matching combined strategy. It can be seen
that features on the ground have been matched successfully in
our method.

B. 2D Stabilization

Now, we have already obtained rich and uniform features
within and across views. Below, we begin to discuss how to
stablize and stitch videos jointly. For the completeness, we
first introduce the bundled-path method [16] that stabilizes a
single video. Then, we add the stitching constraints in the next
section to consider the inter motions between multiple videos.
We begin by reviewing the method in the case of a single path,
followed by the case of bundled paths.

1) Smooth a Single Path: A single homography F is
estimated between neighboring frames in the original video.
It is estimated by tracked features between adjacent frames.
The camera path is defined as a concatenation of these
homographies [14]:

C(t) = F(t)F(t − 1)...F(1)F(0), F(0) = I. (1)

Given the original path C = {C(t)}, the smoothed path
P = {P(t)} is obtained by minimizing the following energy
function:

O({P(t)}) =
∑

t

‖P(t) − C(t)‖2

+
∑

t

(λt

∑
r∈�t

ωt,r (C) · ‖P(t) − P(r)‖2), (2)

Fig. 6. Smoothing of bundled paths in which each cell has its own camera
path.

where �t denotes the neighborhood at frame t . The data term
‖P(t) − C(t)‖2 enforces the new camera path to be close to
the original path so as to reduce croppings and distortions.
‖P(t) − P(r)‖2 is the smoothness term that stabilizes the
path. The smoothing kernel wt,r gives higher weights to paths
with temporal proximity and preserves motion continuity.
It is set as the product of two Gaussians: the first Gaussian is
a function of the frame distance and the second is a function
of the difference in translation coefficients of the camera
path C(t). Similar to the bilateral filter, the smoothing is
conducted adaptively. For example, quick camera motions,
such as quick rotations and fast zoomings, will get smaller
smoothing weights due to large variance of the camera path
between frames, and thus they will be skipped to avoid
excessive croppings. Note that λt balances the smoothness
for each frame. With a small λt , the result stays close to the
original position. Note also that λt is computed iteratively, by
checking the cropping ratio and distortions for every frame.
When λt is set to 0, the result will roll back to the original
input. The smoothed video is obtained by applying a warping
transform Bt on each frame of the input video, which is
defined as B(t) = C−1(t)P(t).

2) Smooth Bundled-Paths: The algorithm divides each
frame into 16×16 grids and estimates a camera path for each
cell. The estimation is based on the “as-similar-as-possible”
mesh warp [20], which warps the frame t − 1 to the frame t .
Fig. 6 illustrates the configuration. All paths are smoothed
simultaneously by a space-time optimization:

∑
i

O
({

Pi (t)
})

+
∑

t

∑
j∈N(i)

∥∥∥Pi (t) − P j (t)
∥∥∥
2
, (3)

where N(i) includes eight neighbors of the grid cell i . Both
Eq. (2) and Eq. (3) are quadratic, and therefore can be min-
imized efficiently by linear system solvers. For more details,
please refer to [16].
There are basically two benefits of choosing bundled-paths

for stabilization: it can handle parallax and correct large
perspective distortions that arise when a single homography
is adopted. More discussions will be given in subsequent
sections.

C. Joint Stitching and Stabilization

In this section, we describe how to jointly stitch and
stabilize multiple videos. The method consists of two steps:
1) finding an optimal camera path that facilitates the stitching
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Fig. 7. Illustration of optimal camera path. Given two original camera paths
C1 and C2, we seek an optimal camera path P that yields the minimum
distortions after frame-warping by W1 and W2.

with minimum distortions and 2) stabilizing videos along the
obtained optimal camera path with considering the stitching
constraints. Similarly, we first present the method in the case
of a single path and then extend it to the case of multiple
paths. Without loss of generality, we only describe in the case
of two views, which can be extended easily to multiple views.

1) Optimal Camera Path Generation: The optimal camera
path should stay in between of all original camera paths and
also as close as possible to these original paths, because large
distortions would occur if a stabilized position is far away
from those original positions. As a result, the optimal path is
obtained by minimizing the following energy function:

O({P(t)}) =
∑

t

λ1(t)‖P(t) − C1(t)‖2

+
∑

t

λ2(t)‖P(t) − C2(t)‖2

+
∑

t

(
∑
r∈�t

ω̂t,r (C1, C2) · ‖P(t) − P(r)‖2), (4)

where C1(t) and C2(t) represent two original camera paths
and P(t) is the optimized path.
The above energy function consists of three terms: two

data terms to enforce the similarities between the optimal
path and the original paths as well as one smooth term to
encourage smooth transitions between neighboring frames.
The smoothing kernel ŵt,r is set to be the product of three
Gaussians:

Gt (‖r − t‖)·Gm1(‖C1(r) − C1(t)‖) · Gm2(‖C2(r) − C2(t)‖),
where Gt () gives higher weights to temporal nearby frames,
and Gm1 and Gm2 measure the changes of camera poses.
We use the translational coefficients of the original paths to
calculate the camera differences. In our implementation, �t is
set to 60 frames and the standard deviations of Gm1 and Gm2
are set to 10.
Fig. 7 shows the configuration with two capturing cameras.

The original paths of two videos are shown in the jittered
curves (in red). The optimal path is obtained after the optimiza-
tion (in green) so that frames will end up with the minimum
distortion when they are warped towards the optimal path by
W1(t) and W2(t).

Different from Eq. (2) where we put a λt in front of the
smoothness term to control the strength of smoothing, we
now put λ1(t) and λ2(t) in front of two data terms. They
control the frame distortions after the frames are warped to
their optimal/destined positions. In principle, each frame has
its own λ1(t) and λ2(t), yielding two extra variables that
need to be solved during the optimization. However, it is too
complex and considered as unnecessary [16]. The alternative
way, which is more efficient, is to adjust them adaptively in
each iteration. That is, we first run the optimization with a
fixed λ{1,2}(t) = λ (empirically set to 3) and then check the
distortion of every frame; if the distortion score of any frame
is beyond a threshold (empirically set to 1.03), we decrease
λ(t) by a step λ(t)/10 and run the optimization again.
The distortion score, also referred to as the wobble

score [16], is derived from the warping transforms (homogra-
phies) W{1,2}(t). The anisotropic scaling of W{1,2}(t) measures
the distortion, which can be computed by the ratio of the two
largest eigenvalues of the affine part of W{1,2}(t).
Eq. (4) is quadratic and thus can be solved by any linear

system. Similar to [16], we use a Jacobi-based iterative
solver [41]. The update rule is defined as:

P(ξ+1)(t) = λ1(t)

γ
C1(t) + λ2(t)

γ
C2(t)

+
∑

r∈�t ,r �=t

2ω̂t,r

γ
P(ξ)(r), (5)

where γ = λ1(t) + λ2(t) + 2
∑

t∈�t ,r �=t ω̂t,r and ξ is the
iteration index. We set P(0)(t) = C1(t) for initialization.
Figure 8 shows the influence of λ1,2(t). By setting λ1(t) = 1

and λ2(t) = 0, P(t) tends to C1(t), i.e., we warp the
right frame towards the left frame. The right frame absorbs
all perspective distortions, resulting in a frame stretching as
shown in Fig. 8 (a). Fig. 8 (b) shows the opposite case, where
the left frame warp towards the right frame. In Fig. 8 (c),
the left and right frames are warped to the optimal position,
in which the perspective distortions are equally shared, thus
leading to the best visual quality. Notably, some of perspective
distortions can still be observed in Fig. 8 (c) due to the use of a
single homography. Such distortions can be further suppressed
by mesh-based warps as discussed in Sec. IV.
It is worth to emphasize that the optimal path may or may

not be the exact middle position of two frames. How much a
frame can deviate from its original position is determined by
the scene depth. If the scene is flat, the corresponding frames
can move a large distance without any distortions. However, if
the scene contains large depth variations, especially when the
variations are not continuous, the corresponding frames can
barely move [42]. In the meantime, although the cameras film
the same scene, the captured contents are different, leading to
different tolerable deviations for different frames. For instance,
the left frame can deviate a large distance while the right frame
is restricted, or both frames can move freely. In the case when
both frames are confined, equal weights will be yielded so
that two frames are transformed to their middle position for a
balanced distortion.
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Fig. 8. (a) Right frame warps towards left frame. (b) Left frame warps
towards right frame. (c) Left and right frames warp towards to the optimal
position. The importance of an optimal path is demonstrated clearly: both
(a) and (b) suffer from strong perspective distortions. (The warping used here
is based on a single homography; whereas the mesh-based warps can further
suppress the perspective distortions.)

Fig. 9. Frames are warped towards the optimal camera path P , yielding two
new camera paths C ′

1 and C ′
2.

2) Single-Path Stitching and Stabilization: After the optimal
path is determined, the next step is to bring the original frames
to this new path. Intuitively, the final result can be generated
by transforms W{1,2}(t) = C−1

{1,2}(t)P(t). However, it usually

will produce unsatisfactory result, as P(t) is obtained without
consideration of frame alignments. Alternatively, we warp the
original frames to the new position according to W{1,2}(t). The
new position will be used as the initialization for the joint
stitching and stabilization.
Figure 9 shows the scenario that two frames are warped

towards the optimal camera path P , which produces two new
videos with camera paths C ′

1 and C ′
2, respectively. Then, our

job is to find their smoothed camera paths, U1 and U2, which
not only inherit the merit of C ′ (to reduce the perspective
distortion) but also take the alignment constraints between
different views into consideration. Moreover, they also follow
a smooth transition between adjacent frames so as to enforce
the temporal smoothness. To achieve this goal, the energy
function is defined as:

O({U1(t), U2(t)}) =
∑

t

‖U1(t) − P(t)‖2

+
∑

t

‖U2(t) − P(t)‖2

+
∑

t

(∑
r∈�t

ωt,r (C
′
1) · ‖U1(t)−U1(r)‖2)

+
∑

t

(∑
r∈�t

ωt,r (C
′
2) · ‖U2(t)−U2(r)‖2)

+β
∑

t

‖U1(t)T1,2(t) − U2(t)‖2, (6)

where wt,r is defined similarly as in Eq. (2). The last term in
the above equation aligns two videos during path smoothing,
where β controls the strength of alignment (β is empirically set
at 1), and the inter camera motion T1,2(t) is a transformation to
align the left and right frames at time t between U1 and U2.
Notice that T1,2(t) is the best fitting homography obtained
from feature matches of the corresponding left and right
frames. We adopt an alternate optimization strategy, i.e., we
fix one path and optimize the other. The update rule for the
Jacobi-based iterative solver of U1 is:

U (ξ+1)
1 (t) = 1

γ1
P(t) + 1

γ1
T (ξ)
1,2 (t)U (ξ)

2 (t)

+
∑

r∈�t ,r �=t

2ωt,r (C ′
1)

γ1
U (ξ)
1 (r), (7)

where γ1 = 1 + T 2(ξ)
1,2 (t) + 2

∑
t∈�t ,r �=t ωt,r (C ′

1) and ξ
denotes the iteration index. Note that, as we adopt the iterative
solver, T1,2(t) is varying during each iteration. Here, T (ξ)

1,2 (t)
is computed according to feature matches of the current
corresponding frames between the left and right videos, whose
position is updated by U (ξ)

1 (t) and U (ξ)
2 (t) after each iteration.

Likewise, the update rule for U2 is:

U (ξ+1)
2 (t) = 1

γ2
P(t) + 1

γ2
U (ξ)
1 (t)T (ξ)

1,2 (t)

+
∑

r∈�t ,r �=t

2ωt,r (C ′
2)

γ2
U (ξ)
2 (r), (8)

where γ2 = 2+2∑
t∈�t ,r �=t ωt,r (C ′

2), At initialization, we set

U (0)
1,2(t) = C ′

1,2(t) = C−1
1,2(t)W1,2(t).

After the optimization, we obtain two camera paths
U{1,2}(t), and the optimized result is generated by warp
transforms B1(t) = C−1

1 (t)U1(t) and B2(t) = C−1
2 (t)U2(t).

The single path stitching method works reasonably well
when the scene is flat, where the motion can be accurately
described by a single homography. However, when the scene
consists of multiple planes, a single homography is not suffi-
cient. To handle scenes with depth variations, we extend the
single path method into the case with multiple paths.
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Fig. 10. Frames are divided into regular cells and each cell has its own
camera path C{i}. After warping towards the optimal common camera path P ,
each cell yields a new camera path C ′{i}.

3) Bundled-Paths Stitching and Stabilization: Figure 10
shows the configuration of bundled-paths during the stitching
and stabilization. Here, P(t) generated by Eq. (4) is still
adopted, which servers as the initialization for the optimiza-
tion. Both left and right videos are divided into 16 × 16
regular cells. Each cell contains its own camera path, denoted
as Ci{1,2}(t). They are warped towards the optimal camera
path P(t) by transformation (Ci

{1,2}(t))−1P(t), which yields

the new camera paths Ci ′{1,2}(t). The first-order continuity is
preserved during this operation, as all cells are transformed
by the same P(t). In other words, the cells would not be
splitted after transformation. Then, we want to find the optimal
paths Ui{1,2}(t), which not only align two views but also have
a smoothed motion. To this goal, the energy is defined as:

∑
i

O({Ui
1(t), Ui

2(t)}) +
∑

t

∑
j∈N(i)

‖Ui
1(t) − U j

1 (t)‖2

+
∑

t

∑
j∈N(i)

‖Ui
2(t) − U j

2 (t)‖2, (9)

where N(i) includes eight neighbors of the cell i . The first
term is the objective function in Eq. (6) for each local path,
and the second and third terms together enforce the spatial
smoothness between neighboring local paths. Again, we adopt
the alternate optimization with Jacobi-based iterations. The
update rule for Ui

1(t) is defined as:

Ui,(ξ+1)
1 (t) = 1

γ ′
1

P(t) + 1

γ ′
1

T i,(ξ)
1,2 (t)Ui,(ξ)

2 (t)

+
∑

r∈�t ,r �=t

2ωt,r (Ci ′
1 )

γ ′
1

Ui,(ξ)
1 (r)

+
∑

j∈N(i), j �=i

2

γ ′
1

U j,(ξ)
1 (t), (10)

where

γ ′
1 = T 2(i,(ξ))

1,2 (t) + 2
∑

t∈�t ,r �=t

ωt,r (C
i ′
1 ) + 2N(i) − 1. (11)

Likewise, the update rule for Ui
2(t) is:

Ui,(ξ+1)
2 (t) = 1

γ ′
2

P(t) + 1

γ ′
2

Ui,(ξ)
1 (t)T i,(ξ)

1,2 (t)

+
∑

r∈�t ,r �=t

2ωt,r (Ci ′
2 )

γ ′
2

Ui,(ξ)
2 (r)

+
∑

j∈N(i), j �=i

2

γ ′
2

U j,(ξ)
2 (t), (12)

where

γ ′
2 = 1+ 2

∑
t∈�t ,r �=t

ωt,r (C
i ′
2 ) + 2N(i). (13)

Different from Eq. (6) in which T1,2(t) is a single homogra-
phy matrix, here, T i

1,2(t) is derived from the mesh warps [15]
between two views. Specifically, a cell i contains four vertices,
denoted as Vi = {v1i , v2i , v3i , v4i }. After warping, these vertices
move to a new place, denoted as V̂ = {v̂1i , v̂2i , v̂3i , v̂4i }. Ti (t)
can be obtained by solving a linear equation V̂i = T i

1,2(t)Vi .
Clearly, T i

1,2(t) encodes the alignment constraints, which is
estimated during each iteration.

4) Multiple Inputs: Suppose that there are N > 2 inputs,
the process of solving the optimal path P(t) as described in
Eq. (4) is now revised as:

O({P(t)}) =
N∑

k=1

∑
t

λk(t)‖P(t) − Ck(t)‖2

+
∑

t

(
∑
r∈�t

ω̂t,r (C1, .., CN ) · ‖P(t) − P(r)‖2).

(14)

Here, ω̂t,r (C1, .., CN ) takes all paths into consideration. The
Jacobi-based update rule can be derived accordingly. Likewise,
Eq. (6) can be revised to take N inputs:

O({U1(t), .., UN (t)})

=
N∑

k=1

∑
t

‖Uk(t) − P(t)‖2

+
N∑

k=1

∑
t

(∑
r∈�t

ωt,r (C
′
k)‖Uk(t) − Uk(r)‖2)

+β

N−1∑
k

∑
t

‖Uk(t)Tk,k+1(t) − Uk+1(t)‖2

+β
∑

t

‖UN (t)TN,1(t) − U1(t)‖2. (15)

Note that the first two terms in the above equation remain the
same as in Eq. (6). For frames that do not overlap, we ignore
the alignment term accordingly. When extending Eq. (15) into
bundled-paths, we add the term

∑
t
∑

j∈N(i) ‖Ui
k(t)−U j

k (t)‖2
for each video to constrain the similarity of sub-paths. Empir-
ically, the optimization converges in 15 iterations.

5) Result Synthesis: After optimization, each mesh cell
gets a warp transform Bi

k(t) = Ci,−1
k (t)Uk(t). Then, we

get the optimized result of each input video by warping
all cells according to the desired positions. The final video
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Fig. 11. Different composite strategy: overlaying vs. blending. We overlay
one frame on top of the other frame to avoid any potential misalignment
within overlapping region.

Fig. 12. Each row shows an example by excluding one component of
our framework. The left and right columns show the results without and
with one component, respectively: (a) without/with rich feature tracking,
(b) without/with stitching constraints, and (c) without/with meshed-based
structures. The artifacts are highlighted by red arrows.

is synthesized by merging each optimized video frame-by-
frame. In this procession, we adopt the multi-band blending
algorithm [43] to remove stitching seams.

IV. DISCUSSIONS

We discuss our method in several aspects in this section to
show its effectiveness.

A. Overlaying Frames

We adopt the overlaying strategy in our final composition,
where one frame is laid on top of the other. The main reason
of adopting this strategy is to hide any potential misalign-
ment within the overlapping area for an improved robustness.
Fig. 11 shows an example where the linear blending strategy
introduces severe ghosting effects due to the misalignments.
Clearly, the overlaying strategy is a good choice as long as
the overlapping boundary regions can be well aligned. For
this purpose, we add more weights to feature points that
are close to overlapping boundaries. With emphasis on these
boundaries, some misalignments can be allowed in the central
area of overlapping regions, because they are covered and
cannot be observed. By adopting this strategy, we sacrifice
the registration quality of central areas to achieve better
alignments at overlapping boundaries. A similar scheme has
been reported in [39].

B. Functionality of Different Components

We evaluate our framework by turning off each component
one by one. Fig. 12 shows some results. In Fig. 12 (a), we turn

Fig. 13. To compare the direct stitch and our method in terms of the temporal
smoothness, we use temporal images for illustration: (a) a green line in the
stitched video is selected to illustrate the temporal smoothness; (b) the green
line is plotted along the temporal domain using the direct method, where
one video is transformed to the other without any consideration of temporal
smoothness; (c) the green line plotted for our method. Clearly, the direct
stitching method yields high-frequency jitters.

off the rich feature tracking. As a result, most of the features
are located on the building with only a few being placed on the
ground. The corresponding result suffers from misalignments.
In Fig. 12 (b), we turn off the alignment terms (i.e., the last two
terms in Eq. (15)). It is clear that two views cannot be aligned
in the absence of inter motions. In Fig. 12 (c), we apply a
single homography for stitching and stabilization, rather than
mesh warps. Not only misalignments arise at the stitching
boundary, but also large perspective distortion appears at the
right frame border (highlighted by two arrows in Fig. 12 (c)).
For a clearer illustration, we use linear blending for examples
(b) and (c). These results suggest that every component is
important to ensure a reliable and high-quality video stitching.

C. Direct Stitching

The most straightforward idea for video stitching is to apply
image stitching method directly in the frame-by-frame fashion.
However, such a direct stitching is problematic due to the
ignoring of temporal smoothness. Here, we demonstrate this
problem by an example, with the results shown in Fig. 13.
First, we fix a vertical line (shown in green) in Fig. 13 (a).
When the video is played, we only record the set of pixels
along this fixed line and concatenate all these sets according
their time-ordering so as to generate Fig. 13 (b) and (c). Note
that the horizontal axis of Fig. 13 (b) and (c) represents the
time-line, while the vertical axis represent the pixels covered
by the fixed-line. Fig. 13 (b) shows the result of direct
stitching. As can be seen, it is jittering. Fig. 13 (c) shows
our result which is much smoother.

V. EXPERIMENTS

The input videos are captured by several moving cameras
(cellphones or UAVs). For cellphones, each camera is held
by one person who can move freely, while two UAVs with
independent flights are used for the other case. Our system can
automatically adjust them to the same resolution and frame-
rate. We run our method on a PC with Intel i5 2.4GHz CPU
and 8G RAM. The boundary seam is eliminated by multi-band
blending implemented in OpenCV. For a video of 1280× 720
resolution, our unoptimized system takes 511 milliseconds to
stitch two frames (i.e., about 2 fps). In particular, we spend
123ms, 94ms, 31ms, 137ms and 126ms for feature extrac-
tion, motion estimation, path optimization, frame warping and



5500 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 11, NOVEMBER 2016

Fig. 14. Video stitching results on various scenes. Refer to the supplementary files for the videos.

TABLE I

THE STABILITY AND STITCHING SCORES OF EXAMPLES IN FIG. 14

multi-bad blending, respectively. For the same resolution, the
running time reported in [39] is several minutes per frame,
which involves the time-consuming dense 3D reconstruction.
To verify whether our method is capable of stitching various

kinds of videos, we have tried many examples, with eight of
them being shown in Fig. 14. Here, we do not confine the
camera motions during the capturing so that some of them are
captured during walking and some with camera pannings or
rotations. The 2nd and 5th examples focus on scenes of a lake
and the sky, while the 3rd example contains dynamic moving
objects. The results show that our system can handle these
challenging cases robustly. The 4th, 6th, and 7th examples film
scenes consisting of two dominant plane structures (the ground
and building). The detected features are equally distributed
using our rich feature tracking. The feature distribution of the
6th example is shown in Fig. 3(b). The single homography
stitching result of the 2nd example is given in Fig. 8(c). The
mesh warps can suppress perspective distortions efficiently.
The 8th example is captured by UAVs. Our method can stitch
and stabilize all these videos quite successfully.

A. Objective Evaluations

We propose two objective metrics for the evaluation of
stability and stitching quality.

1) Stability Score: Evaluates the smoothness of the final
stitched video. It is originally proposed in [16] to access

the stability of a single video. Here, we borrow the idea for
evaluations of stitched videos. Specifically, we track features
on the stitched video and retain tracks with length greater
than 20 frames. Then, we analyze these feature tracks in the
frequency domain. We take a few of the lowest frequencies
(2nd to 6th without DC component) and calculate the energy
percentage over full frequencies. Averaging from all tracks
yields the final score. Notably, this metric is better suited
for the evaluation of the same video processed by different
approaches [16]. The stability score should stay close to 1 for
a good result.

2) Stitching Score: Evaluates the stitching quality.
We calculate the feature reprojection error for the evaluation.
Specifically, for each frame, the distance between a
pair of matched features is calculated after the features
being transformed. A small distance indicates a good
alignment [20]. Averaging distances from all feature pairs
gives the stitching score of one frame. We take the worst
score (the largest value) among all frames as the final
stitching score. Notably, as the overlaying strategy is adopted,
we only involve features near the stitching boundary for the
evaluation.
Table I summaries the stability and stitching scores of

examples in Fig. 14. For the stability score, we show the score
of input shaky videos (averaged from two inputs) and the score
of the stitched result. As indicated by these scores, the stability
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Fig. 15. Comparison with the method [39]: the left example consists of three views and the right one combines two views. For both examples, our result
is more stable than method [39]. Left example stability: 0.82 (Lin’s) vs. 0.87 (ours). Right example stability: 0.77 (Lin’s) vs. 0.84 (ours). Please refer to the
supplementary files for a clearer visual comparison.

has been largely improved in all examples. On the other hand,
in Fig. 13(b), the direct stitching method leads to a decrease
of the stability from 0.57 (original) to 0.43 (stitched).
For the stitching score, a visually visible misalignment often

produces scores above 5. For example, the stitching score of a
failure case in Fig. 17 is 6.67. The largest value in our results
is 1.17, corresponding to the 7th example in Fig. 14.

B. The Parameter β

The most important parameter in our system is the β
of Eq. (15), which balances the strength of stitching and
stabilization. It is set to 1 empirically in all examples presented
above. Here, we would like to elaborate the effectiveness
of adopting different β values: 0.1, 1, and 10 (refer to
the supplementary video for the example). Accordingly, the
stability score is 0.87, 0.85, and 0.56, respectively, whereas
the stitching score is 5.39, 1.05, and 0.88, respectively. When
β = 0.1, although the results have the highest stability score,
it also corresponds to the poorest stitching score. On the
contrary, larger β can produce high quality stitched results, but
the video suffers from strong shakiness. The empirical value
β = 1 seems to be a good tradeoff between the stitching and
stabilization.

C. Compare With Other Method

We do not compare our method with the methods proposed
in [3]–[5] that rely on fixed rigs or the methods in [37] and [38]
that stitch videos regardless of the temporal smoothness.
We compare our method with the method proposed in [39].
This method also stitches multiple synchronized videos cap-
tured by hand-held cameras and is based on the dense 3D
reconstruction (to calculate 3D camera paths and dense 3D
point clouds). A common virtual path is synthesized in
between of the original 3D paths and the result is rendered
by warping each individual views toward the virtual path.
The warping is guided by various constraints to minimize
distortions and increase temporal stabilities.
Note that the method in [39] requires camera intrinsic

parameters that are obtained by a careful calibration. More-
over, the 3D reconstructions (both sparse and dense) require
consistently not only large overlaps among multiple videos but
also high-quality videos (i.e., capturing with high-end DVs)
so as to avoid the rolling shutter effects. On the other hand,
the rolling shutter effects would be difficult to avoid when
capturing with cell-phones or micro UAVs. Because of this,
the method presented in this paper do not rely on the 3D
reconstruction, but is a 2D approach with improved efficiency
and robustness.

Fig. 16. We developed a plugin “Video Stitcher” at Adobe After Effects
CC2015. We can drag in videos and drag the effect for stitching. We have
captured the screen of the whole process, refer to our supplementary videos.

Fig. 17. A failure case where misalignments on the ground can be seen.
It is caused by strong motion blurring, which significantly damages the feature
quality, resulting in incorrect inter motions.

Fig. 15 provides a visual comparison. It can be seen
that we have produced comparable results in terms of the
stitching quality as well as the stability. Sometimes, the results
in [39] contain some distortions along the frame border due
to the inaccuracy of reconstructed 3D points at these regions.
In contrast, our result is basically free from these distortions
(see, e.g., the left bottom region of the left example in Fig. 15,
and refer to the supplementary files for a clearer comparison).

D. “Video Stitcher” as AE Plugin

To demonstrate the practice of our technique, we have
further developed a Plugin “Video Stitcher” at Adobe After
Effects CC2015, as shown in Fig. 16. For the improved
robustness and stitching quality, we integrate our grid-based
tracker into the plugin. We also provide the options for
different feature descriptors. We would like to share this plugin
to the public in the near future.

E. Limitations and Future Works

We observed some limitations of our approach, which
form the direction for our future works. Fig. 17 shows one
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failure example (the corresponding video is provided in the
supplementary files). Here, we can see some misalignments
clearly in the ground region. The reason is as follows: this
video contains a strong motion blurring, especially the left
one, which severely lowers the quality of the matched features
(in terms of both the number and accuracy) and thus leads
to the failure of mesh warping. In general, a large depth
variation and an inaccurate motion estimation would lead to
misalignments. To solve this problem, video deblurring [44]
would be a possible solution.
In this work, we have not considered an accurate video

synchronization, whereas videos are synchronized roughly by
users. Users start recording approximately at the same time.
Empirically, we find this manual synchronization works well
in many cases. Certainly, an advanced synchronization could
further improve the performance, such as [45]. Alternatively,
a special APP can be designed and installed on cell-phones,
which triggers the video recording at the same time [7].

VI. CONCLUSION

We have presented in this paper a unified framework that
jointly stabilizes and stitches multiple videos captured by
moving cameras. To this end, we propose to estimate both
inter motions between different cameras and intra motions
within a video. Based on them, the joint video stabilization
and stitching is formulated into a constrained optimization
problem, in which inter motions enforce the spatial align-
ment and intra motions maintain the temporal smoothness,
respectively. By dividing each video frame into cells so as
to facilitate the bundled-path approach, our method is capable
of handling scenes with parallax. Extensive simulations and
some supplementaries on various videos are provided to show
the effectiveness of our method.
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