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Abstract—Physically based rendering has been widely used to
generate photo-realistic images, which greatly impacts industry
by providing appealing rendering, such as for entertainment
and augmented reality, and academia by serving large scale
high-fidelity synthetic training data for data hungry methods like
deep learning. However, physically based rendering heavily relies
on ray-tracing, which can be computational expensive in compli-
cated environment and hard to parallelize. In this paper, we pro-
pose an end-to-end deep learning based approach to generate
physically based rendering efficiently. Our system consists of two
stacked neural networks, which effectively simulates the physical
behavior of the rendering process and produces photo-realistic
images. The first network, namely shading network, is designed
to predict the optimal shading image from surface normal,
depth and illumination; the second network, namely composition
network, learns to combine the predicted shading image with the
reflectance to generate the final result. Our approach is inspired
by intrinsic image decomposition, and thus it is more physically
reasonable to have shading as intermediate supervision. Extensive
experiments show that our approach is robust to noise thanks to
a modified perceptual loss and even outperforms the physically
based rendering systems in complex scenes given a reasonable
time budget.

Index Terms—Physically based rendering, intrinsic image,
stacked neural network, shading, modified perceptual loss.

I. INTRODUCTION

HYSICALLY based rendering (PBR) has been widely

used to generate photo-realistic color images, which are in
high demand for entertainment industry. While deep learning
has been demonstrated to be very successful for many vision
problems, PBR also facilitates the neural network training
by contributing natural looking synthetic color images [1].
However, PBR can be prohibitively computational expensive,
and the rendering procedure could take up to hours to converge
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especially for indoor environment with complicated illumina-
tion and geometry which is super hard for ray tracing. Even
at a reasonable trade-off between rendering time and quality,
generating a large-scale synthetic dataset using PBR took up
to 1 month on a cluster with hundreds machines holding
56-core CPU [1]. In this paper, we propose a deep learning
based framework that learns to produce high-quality PBR
images in nearly real-time.

We speed up PBR by simulating the majority expensive
component efficiently with deep learning. Inspired by intrinsic
image decomposition, a common photo can be decomposed
into reflectance and shading components, where the reflectance
can be rendered fast, usually called albedo, but the shading
requires considerable amount of computations through ray
tracing. Therefore, we propose to train a neural network to
predict the shading and then combine it with the efficiently
rendered albedo to produce photo-realistic color images. Com-
paring to a naive end-to-end black box, our network focuses
more on the illumination without the distraction from color
variance. More particularly, we address the following chal-
lenges.

The first challenge is how to estimate shading efficiently.
Essentially shading is a 2D map and can be calculated
through a integral operation [2], [3], which reflects the inter-
play between illumination and objects in traditional ren-
dering. However, the traditional method is computational
expensive and time-consuming because of the ray bounce,
inter-reflection, etc. Given ground truth, i.e. physically based
rendered shading using unlimited running time, estimating
shading can be formulated into a fully convolutional neural
network taking the required information, such as the surface
normal, depth, and illumination as input, and trained with a
{1 loss with regard to the ground truth. However we find the
model trained in this way produces blurry results as shown
in the experimental section. Inspired by Chen and Koltun [4],
we utilize the perceptual loss from a pre-trained network such
as VGG-19 [5] on ImageNet [6], which successfully removes
the artifacts but produces results with strong grid patterns. We
suspect a possible reason could be that the losses defined on
high-level perceptual features are in overly small resolution,
which causes mosaic artifacts up to the size of receptive field
in the output image. To address this issue, we remove the
high-level perceptual layers from the loss, and in practice we
found a combination of the first 3 layers that gives satisfying
performance.
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Given shading predicted for the camera viewpoint, how to
efficiently combine it with the reflectance is yet another chal-
lenge. A straightforward way is to multiply them directly and
performs a tone-mapping or linear projection [7]-[9]. How-
ever, this approach is sensitive to the noise in the estimated
shading, and only create up to an approximation [2], [10].
In contrast, we train a composition network, which takes
the reflectance and shading as input and directly produce
the color image. We found that this composition network
works significantly better than manually designed visualization
algorithms and is more robust against noise.

The contributions of this paper are mainly in four aspects.
First, we propose a deep learning framework that efficiently
generate high quality PBR up to nearly real time. Second,
we empirically find a combination of different layers in
perceptual loss to help avoiding artifacts in the result. Third,
our network estimates shading rather than the rendered image
directly, which allows the network to tackle the most com-
putational expensive component of the rendering process and
focus on generating shading without distraction. Last, we train
a network to combine shading and reflectance for the final
color image, which generates higher-quality results comparing
to traditional methods.

II. RELATED WORK
A. Physically Based Rendering

PBR is a rendering algorithm based on the physical prop-
erties of light in the real world. The theory of PBR was
elaborated by Pharr et al. [11]. Recently, due to the revolution
of data hungry methods, such as deep learning, the demand for
efficient rendering goes up for preparing large scale synthetic
training set [1].

Recently, deep learning has been used to speed up PBR.
Chaitanya et al. [12] synthesis images with strong noise
quickly by using a small sample rates; after that, a network
is designed to realize operation of denoising. Different from
our work, their work relies on traditional rendering engine
and pays more attention on image post-processing (denoising),
while we design a physics-driven system that imitates the
whole rendering process.

B. Photo-Realistic Image Generation

Our work is also related and inspired by previous work
for photo-realistic image generation. Photo-realistic images are
widely used and desired in many fields (e.g., film production,
super-resolution, interior design). Beers er al. [13] generated
photo-realistic and super-resolution facial images from random
vectors through a progressively grown generative adversarial
network. Luan et al. [14] and Mechrez et al. [15] transfer
photo-realistic style into content image to generate another
photo-realistic image in deep learning. Chen and Koltun [4]
generate photo-realistic images from semantic layouts through
a cascade refine network (CRN). And their work is further
promoted by Wang et al. [16] and Qi et al. [17]. Besides, some
other networks (e.g. pix2pix [18], CycleGAN [19]) are also
used to produce photo-realistic images, for example translating
sketch to photo-realistic images. Compared to these image
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generation work, our model takes necessary data for rendering
as input and shows more respect to the physical procedure of
the rendering in network architecture design.

C. Intrinsic Image Decomposition

Given an observed image (I), it can be decomposed into a
reflectance (R) image multiplying a shading (S) image pixel-
by-pixel. Without further constraints, the decomposition is a
highly ill-posed problem in that the number of unknown vari-
ables (R,S) are twice the known values (I). The classic retinex
algorithm is first introduced by Land and McCann [20], which
analyzes local image deviations in shading and reflectance, fol-
lowing which different assumptions and priors were proposed
[21]-[23]. In particular, some methods [24], [25] tried to learn
the priors to judge the image derivatives, while others proposed
additional constraints to reduce the number of unknowns
[22], [26]. With the success of deep learning, high
quality decomposition results were reported by various
deep approaches. Baslamisli et al. [27] combines the
physics-based reflection model, reflectance and shading gra-
dients in deep learning capacities for improved performances.
Janner et al. [9] proposed a Rendered Intrinsics Network (RIN)
which can predict reflectance, shape, and lighting conditions
given a single image. Lettry et al. proposed an end-to-end
learning solution that can be trained without any ground
truth supervision [28]. To deal with the lack of training
data, Han ef al. [29] synthesized training pairs with physical
based renders. They feed the dataset to train a deep neural
network for the decomposition and further fine-tune it for
real-world images. In this work, we do composition rather
than intrinsic decomposition. The intrinsic images — predicted
optimal shading image for PBR and reflectance image are
combined through a composition network.

III. METHOD
A. Overview

Given appropriate rendering resources, such as geometry,
lights, albedo, etc., many off-the-shelve physically based ren-
derers, such as Blender [30], Mitsuba [31] and Maya [32],
can produce photo-realistic images that are not distinguishable
from real-world photos if there is no running time limit. Our
goal is to design a neural network architecture which takes
these rendering resources as input and efficiently produces
photo-realistic images of similar quality with that from PBR.
Fortunately, most of the rendering input source data can
be represented in 2D images, which allows us to use the
well-known convolutional neural network (CNN) architecture.
Specifically in our work, scene geometry is encoded in 2D
depth and normal maps, denoted as D e R®**1 and
N € R®*"*3 respectively; illumination is encoded in two 1-
channel panoramic illumination images Ly, L; € RW>HxI
with distance and intensity values; albedo is encoded in a
reflectance map R € R”*"*3_ Note that all of these sources
can be rendered extremely fast through typical rasterization,
and the time consumption is neglectable compared to the PBR
itself.
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(a) Generated shading (b) Reflectance

Fig. 1.

(c) Generated image (d) Reference

One example that demonstrates the reverse process of image intrinsic decomposition to generate rendering results. First, our network generate shading

(a) from scene information. Then, it combines the shading and reflectance (b) with a composition network to automatically get approximate physically based
rendering outputs (c). (d) Reference images that rendered by render engine (Mitsuba).
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Network architecture and workflow. Our network mainly consists of two sub-networks, i.e. shading network and composition network. Shading

network synthesizes shading image using surface normal, depth, panoramic illumination (distance and intensity) as inputs. Composition network combines

the generated shading image with the reflectance to produce a color image.

Providing the above information, we train an end-to-end
neural network in a supervised way taking the PBR rendering,
e.g. from Zhang et al. [1], as the ground truth. The overview
of our approach and network architecture are illustrated in
Figure 2. Our network consists of two major components.
The first network receives a concatenation of D, N, L; and
L; (e.g., all except R) and predicts the shading of the scene
S € R¥*"x3 (Figure 1 (a)), and the second network receives
S (Figure 1 (a)) and R (Figure 1 (b)) to predict the final
photo-realistic image (Figure 1 (c)), which is expected to be
similar to the ground truth (Figure 1 (d)).

B. Shading Network and Composition Network

As mentioned before, both shading network and composi-
tion network can be formulated into fully convolutional neural
network. We adopt U-Net with short-cut connection [34] as
the backbone of our network and modify it to serve our
purpose. As shown in Figure 2, the shading network starts
from several independent convolution layers from each of the

inputs to extract features, which are then concatenated and feed
as input to the U-Net. For the composition network, it directly
concatenates the output shading from the shading network with
the reflectance map as the input to produce the final rendering.
The composition network is shorter than the shading network
as it requires less long range context, and fewer parameters
are easier to optimize.

C. Rendering Input

The inputs of our network consist of essential information
for rendering, including geometry, reflectance, illumination,
such that the shading network has the potential to simulate
the ray-tracing and produce proper shading.

More specifically, the 3D virtual geometry is represented
as 2D depth map and surface normal map in camera view.
The reflectance, i.e. the albedo, encodes the color reflected
from an object and is constant to illumination, which is also
represented as a 2D map. All of these information can be
rendered efficiently from Mitsuba.
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[llumination position diagram

A schematic diagram for looking for panoramic illumination. In camera coordinate system, point o is the position of camera, x axis represents

where camera looks at, z axis represents camera’s top orientation and the orange point is a light source. It is easy to calculate the value of the yaw angel
a € (—1807,180%) and the pitch angle # € (0%, 180?) geometrically. To produce panoramic illumination image, we establish linear mapping relationship
between (a, f) and position (x, y), x € (0,360), y € (0, 180). In illumination position diagram, point L corresponds to light source in camera coordinate

system, point A (center) represents where camera look at.

s 7

(a) Images from camera view (b) Illumination (Intensity and Distance)

Fig. 4. Two examples of illumination map. (a) Two images rendered from
different camera views in the same room. (b) The corresponding illumination
maps, encoding intensity and distance information of direct light sources.
We can discover that the illumination maps contains invisible light sources in
images (a).

Intuitively, the illumination can be also represented into a
2D map, with values on each pixel encoding the strength and
the distance of the light source, if any, from the correspond-
ing inbound direction. However, we find it cannot capture
light sources outside the camera frustum, which have huge
impact on the rendering. To handle this, we propose to use a
panoramic illumination image, which encodes all light sources
that are visible from the camera to render. The panoramic
illumination image is an equirectangular reprojection of a unit
sphere to a 2D regular image, yet still with each pixel encoding
the strength and distance for light sources.

Figure 3 gives the pipeline for generating panoramic
illumination image, and Figure 4 displays two examples.
In Figure 4 (a), there are two images rendered from different

(a) Color image (b) Shading image

Fig. 5. Example of ground truth. (a) Physically based rendered color image.
(b) Shading image, the texture is removed.

camera views in the same room. And Figure 4 (b) is their cor-
responding panoramic illumination images, encoding intensity
and distance information of direct light sources. When com-
pare Figure 4 (a) and Figure 4 (b), we find that illumination
images contain invisible light source in Figure 4 (a).

D. Ground Truth

We require ground truth for physically based rendered
shadings and color images as the supervision for the shad-
ing network and composition network respectively. Following
Zhang et al. [1], we use Mitsuba to generate our ground truth
PBR color image. For the ground truth shading, we remove the
texture from the virtual scene and re-render the PBR image.
Figure 5 shows examples of our color image (Figure 5 (a))
and shading (Figure 5 (b)) ground truth.

E. Losses

To generate photo-realistic images, we adopt the perceptual
loss [4], [35] based on a pre-trained visual perception net-
work (we use VGG-19 network [5]). Unlike €1 or £, loss,
the perceptual loss helps to learn both local details and global
structures since different layers in the network represent an
image at different levels of abstractions. Mathematically, let
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(a) Network (shading) (b) Network (image)
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(c) OpenGL

Fig. 6. Rendering results using neural network and software. (a) Shading generated by network. (b) Color images generated by network. (c) Color images

rendered by OpenGL. (d) Color images rendered by Mitsuba (Ground truth).

{®,} be a collection of layers in the visual perception network.
For a training sample (X, R,Y,S), the perceptual loss of
shading network is defined as

N
L10) = D ull®i(S) — ©1(f(X; ), ()
1

where | = 0,..., N, N is the number of layers in the
pre-trained visual perception network, {4;} are the hyperpara-
meters which balance the contributions of each layer / to the
loss. Note that for / = 0, the loss is the ¢ distance between
the network output and ground truth.

Similarly, the perceptual loss of composition network is
defined as

N
La(p) = Dl ®i(¥) = Dy(g(f(X;0), R; p))I11,  (2)
i

Empirically, we find that the hyperparameters used to
balance different layers of VGG-19 in perceptual loss are
important, because of the various properties of different
layers. Specifically, the higher layer of VGG-19 represents
higher-level features which is robust to noise in protecting
structure but may introduce strong grid patterns; the lower
layers of VGG-19 represents lower-level features which leads
to precise outputs but easily produces blurry results with some
unexpected effects. These situations will be further detailed
and exhibited in our experiments later.

IV. IMPLEMENTATIONS
A. Datasets

The data that we use for experiments includes surface
normal, depth, reflectance, shading, panoramic illumination
and PBR (ground truth). We use SUNCG [36] as it provide
a large number of indoor scene with realistic furniture layout
for rendering purpose. We follow Zhang et al. [1] to sample
the camera viewpoints and use the physically based rendering
from the PBRS dataset they provided. We generate the other
inputs, e.g. reflectance map and panoramic illumination image,
and ground truth, e.g. physically based rendered shading

ground truth from the raw models in SUNCG. To make
sure the shading is consistent with the color rendering from
Zhang et al. [1], we use the same indoor and outdoor illumi-
nation with them.

B. Training Details

We adopt a two-stage training schema to make the training
stable. The shading network is firstly trained and fixed once
it converges reasonable well. Then, we train the composition
network using the products of well-trained shading network to
approximate the final outputs.

Specifically, we randomly choose 20, 000 training instances
in each epoch for the training of composition network. The
shading and composition networks are trained with 14 epochs
and 12 epochs respectively with Adam [37]. During training,
we set the batch size to 1, and the learning rate to 0.0001. To
complete the training procedure, it costs about 104 hours on
one Nvidia 1080Ti GPU.

V. EXPERIMENTS

In order to certify our work’s efficiency and validity, we con-
duct several valuable experiments. In section A, we compare
our network’s products with software’s products in quality
and time consumption to certify our superiority. In section
B, we prove our loss function, composition network, shading
network and approach to realize physically based rendering
using intrinsic images are valid. In section C, we compare
our results with baselines (pix2pix [18], CAN [33], Cycle-
GAN [19], U-Net [34]) in qualitative and quantitative ways.
In section D, we test our network on more complex scenarios.

A. Compare With Software Rendering Results

In order to illustrate the effectiveness of our work, we com-
pare our results generated by neural network with results
rendered by software, such as OpenGL and Mitsuba.

Figure 6 show the results generated in different ways.
Figure 6 (a) is the shading image, an intermediate prod-
uct of our network. By comparing the result images visu-
ally, we notice that the images rendered by our network
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(a) L, loss (b) L, loss ( fifth layer )

(¢) Full-perceptual loss (d) Part-perceptual loss

Fig. 7. Results of different loss functions. (a) Network output using L1 loss function, image is blurry. (b) Network output only use the fifth layer of VGG-
19 to calculate L1 loss, has strong pattern but protects structure well. (c) Network output using standard perceptual loss function (5 CONV layers from the
VGG-19 network), patterns can be observed in the image. (d) Network output using part-perceptual loss function (3 CONV layers from the VGG-19 network),

image is clean and sharp.

(Figure 6 (b)) are superior than the ones rendered by OpenGL
(Figure 6 (c)), in terms of both illumination variation and
colors. Moreover, our results are comparable with Mitsuba
rendering results (Figure 6 (d)). However, the time costs
have wide variations. We can get a rendering image (360 x
480) about 40 milliseconds through OpenGL and about
10.2 seconds through our network while about 3 minutes by
using Mitsuba (a render system, computes ray tracing [38]
relying on CPU) with an i7, 4 cores CPU. Besides, our network
can benefit from GPU, which takes 0.145 seconds to generate
the output on a GPU 1080Ti in this work. In conclusion, using
our network can get satisfactory results and save time by a
large margin.

B. Validation

1) Does Loss Function Matter?: In this part, we use dif-
ferent loss functions for comparison and try to recombine the
VGG-19 [5] layers which are used to calculate perceptual loss.
And the purpose of this experiment is to provide a guidance
for a better choice of loss function and help us better determine
hyperparameters in Eq. 1 and Eq. 2.

We apply these loss functions above into our rendering task,
and the results are displayed in Figure 7. When we use L1
loss function (i.e. 4; = 0,i = 1...5), the generated image
is blurry, e.g., Figure 7 (a). The reason for this phenomenon
is because the L1 loss function calculates differences of two
images in a low-level abstraction, and it is sensitive and not
robust to unexpected effects, such as noise caused by low
sample rate, etc. [12]; note that such noise is hard to avoid
in indoor physically based rendering, which often happens in
the dataset [1] adopted in our experiments. In the contrast,
the perceptual loss compares images in high-level abstraction
and evaluates structures and sematics at the same time. Acqui-
escently, the standard perceptual loss function (full-perceptual
loss) uses 5 CONV layers of the VGG-19 network to calculate
loss value [4], [39], [40]. And the products of full-perceptual
loss function are shown in Figure 7 (c). Please notice the

obvious pattern on the surface of sofa in Figure 7 (c). What’s
more, we also adopt the fifth layer of VGG-19 alone to
calculate the L1 loss value and guide the training process (i.e.
Ai = 0,i = 0...4),the generate result shows well-protected
structure but is filled with strong patterns, as we can see
in Figure 7 (b). Thus, in order to avoid blur and pattern
effects, we use high-level features but discard or decrease
higher layers’ effects of the VGG-19 network.

As a result, we combine the first 3 layers to get a new loss
function (part-perceptual loss). Specifically, the hyperparame-
ters (i.e. A;,i = 0...5) in Eq. 1 and Eq. 2 used to combine
loss value of different VGG-19 layers in this paper are on the
basis of Chen et al. [4] and empirically multiply 1.0, 1.5, 1.5,
0.5, 0.0, 0.0 respectively. The results of part-perceptual loss
function are given in Figure 7 (d).

2) Does Intrinsic Decomposition Matter?: We have divided
our end-to-end physically based rendering network into two
parts, a shading generating network (with inputs surface nor-
mal, depth, illumination map) which are used to generate
shading and a composition network (with inputs reflectance
and generated shading) which combines generated shading
and reflectance automatically. An alternative way is to train
one fully convolutional network (with all inputs combined)
to directly produce the rendering image. In order to verify
the effectiveness of our network architecture, we combine all
inputs together and feed-forward them into one neural network
(U-Net [34]). During the process, no shading image will be
generated and the final outputs will be produced directly. The
corresponding results are exhibited in Figure 8. Figure 8 (a) are
shading images generated by shading network, Figure 8 (b) are
color images generated by composition network, Figure 8 (c)
are color images generated directly by U-Net with all inputs
combined.

The illumination variation is stronger in Figure 8 (a) than
in color images Figure 8 (b) and Figure 8 (c), where illumina-
tion variation is distracted by color. Thus, providing shading
images as an intermediate supervision contributes to capture
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(a) Shading (b) Color image (c) Color image
(shading+composition) (shading+composition) (tranform directly)

Fig. 8. Verify the superiority of shading network plus composition network.
(a) Shading images generated by shading network. (b) Color images generated
by composition network. (c) Color images generated directly by U-Net with all
inputs combined. Notice that illumination variation in shading images (a) is
stronger than in color images (b), (c). With the help of shading (a), color
images (b) easily capture more significant illumination information than color
images (c). Such as shadows behind the computer, lighted up lamp on the
wall, etc. On the other hand, direct transformation produces non-uniform color
which impairs the visual quality a lot. Please note the wallpaper at bottom in
images (c).

more accurate illumination information. As demonstrated in
Figure 8 (a) and Figure 8 (b), where illumination variation
is better than illumination variation in Figure 8 (c). Such as
shallow shadows behind computer, the lighted up lamp on
the wall. On the other hand, direct transformation produces
non-uniform color which impairs the visual quality a lot, as
shown in Figure 8 (c) the third row. Specifically, non-uniform
color appears at the bottom of wallpaper. One possible reason
is that simultaneously calculating light transport and interac-
tion between light and reflectance (constant to illumination
transform) with all inputs simply combined is too complex
for network to regress without excellent capability and huge
training datasets. On the contrary, our shading plus compo-
sition network appropriately splits the task into two parts,
one for light transport (i.e. shading network), and another
for interaction between light and reflectance (i.e. composition
network), which alleviates the requirements on network capa-
bility and training datasets. We will have more analysis on the
advantages of the stacked shading and composition networks
in section D under more complex scenarios.

3) Does Composition Network Matter?: We can recover an
image (I) by utilizing Figure 9 (a) shading image (S) and
Figure 9 (b) reflectance image (R). The traditional way to
get I is multiplying S and R directly

I~SOR. 3)

like an inverse process of image intrinsic decomposi-
tion [9], [41]. Usually, the recovered image produced by
traditional method can not be displayed on screen directly,
because the pixels’ value are in high dynamic range (HDR),
while the visual range is [0,255]. Thus, some other opera-
tions, such as truncation, linear projection or tone mapping

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

[71-[9], are required to realize visualization. Figure 9 (c) and
Figure 9 (d) show the visualized images with method
used by Janner er al. [9] and tone mapping respectively.
In Figure 9 (a), we can see objects closer to light sources (win-
dows) are brighter, specifically, the bed’s top left corner in
Figure 9 (a) top. However, the illumination variation at bed’s
top left corner is desalinated in Figure 9 (c), (d) top. Inferring
visualization will introduce deviation and visual differences.

Our composition network skips the step of visualization and
combines S and R automatically to get a color image. From
the results (Figure 9 (e)) produced by composition network,
we notice that illumination variation iS more reasonable,
concretely, the illumination variation at bed’s top left corner
is well preserved in Figure 9 (e) top. What is more, color in
Figure 9 (e) is more natural, and is closer to Figure 9 (b)
when compared with color in Figure 9 (c), (d). Besides,
the other reason for adopting network to combine shading
and reflectance instead of multiplying them directly is that
Eq. 3 is an approximate equation. This formulation simplifies
the model, which has influence in photo-realistic images
generating [2], [3], [10]. Thus, we hope neural network,
to some extend, can automatically compensate this deviation
and further improve the final performance, which is proved
effective in Figure 9.

4) How Well Does Shading Prediction Network Work?:
A good shading network should be sensible to inputs transform
and generates reasonable shading images. Thus, we try to
use different panoramic illumination to evaluate our shading
network on it’s outputs. Figure 10 shows generated shading
and corresponding color images under different panoramic
illumination. In Figure 10 (a), there is a light source at the left
in panoramic illumination image which indicates a window
exists at left rear of camera in real 3D scene. Physically,
the object closer to light source should be brighter, and
Figure 10 (b) shows that the lower left corner of shading
image is brighter, which proves the reasonableness of our
shading network. What is more, we also exchange the top and
bottom panoramic illumination in Figure 10 (a), the exchanged
panoramic illumination images are shown in Figure 10 (f).
Then, We use these modified panoramic illumination images
to generate new results, notice that the corresponding shading
Figure 10 (e) and color images Figure 10 (d) are brighter
while using larger light sources, please notice the shadow
in cabinet (Figure 10 (d), (e) bottom), and are darker while
using smaller light sources (Figure 10 (d), (e) top). This
phenomenon is physically reasonable and proves our shading
network performs well again.

C. Perceptual Experiment

In perceptual experiment, we compare our approach to
other four baselines, CAN [33], pix2pix [18], U-Net [34]
and CycleGAN [19] qualitatively and quantitatively. These
baselines are representative in image-to-image translation and
image generation. For fair comparison, all baselines use the
same inputs and supervision ground truths (except for shading
images) as in our approach. In addition, we replace the
L1 and L2 loss function used in baselines with our loss
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(a) Shading (b) Reflectance (c) Linear projection (d) Tone mapping (e) Composition network

Fig. 9.  Combine shading and reflectance. (a) Shading images. (b) Reflectance images. (c), (d) Recovered images, multiplying shading and reflectance
directly; and visualized through linear projection and tone mapping respectively. The illumination variation in them is desalinated. (e) Recovered images,
using composition network. The illumination variation is similar to illumination variation in shading images and have better performance in image quality.

Original Modified

(2) (®

Fig. 10. Shading and corresponding color images generated under different panoramic illumination. (a) Panoramic illumination image. (b), (c) Shading and
color images generated under panoramic illumination image (a). (f) Modified panoramic illumination. (d), (e) Color and shading images generated under
panoramic illumination image (f). We notice that lower left corner of shading image (b) are brighter when light sources exist at left of panoramic illumination

image. What is more, comparing results generated by using original and modified panoramic illumination, we can find that scene become brighter while using
larger light sources and darker while using smaller light source.

(a) Ground truth (b) Our results

Fig. 11.  Compare our results with ground truth in some difficult situation. (a) Ground truth rendered by Mitsuba, (b) Our results. We can get similar visual
effect globally when compare ground truth (a) with our result (b). However, there is strong noise existing in ground truth due to limited rendering time.
Nevertheless, our results are clean and can be produced faster through network.

function in this paper. In all the baselines, we combine all the 1) Qualitative Comparison to Baselines: In Figure 12,
source inputs and directly produce the color rendering as the we analyze visual effects qualitatively on images synthesized
output. by different approaches. In global, ground truth and images
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CAN

pix2pix

CycleGAN

U-Net

Ours

Ground truth

Fig. 12.
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Ground truths, our results and images synthesized by CAN [33], pix2pix [18], CycleGAN [19], U-Net [34]. Images synthesized by our approach

and U-Net are sharp and ground truth alike. While images synthesized by CAN, pix2pix, CycleGAN have problems in blur and shadows, please notice the
open cabinets. Emphatically, lamp on the wall is lighted up (right column) only in our approach.

synthesized by our approach and U-Net are sharp, and they
are approximate in visual. While the products of CAN, pix2pix
and CycleGAN have problems in blur and artifacts. In detail,
we discover that the open cabinets have obvious shadows in
ground truth and images produced by U-Net, pix2pix and
our approach. However, the shadow does not exist in CAN
and CycleGAN. What is more, using our approach (shading
network 4 composition network) is helpful in illumination
variation learning. For example, lamp on the wall (right

column) is lighted up only in our approach and ground truth.
Further comparison with U-Net will be discussed in section D
under more complex scenarios.

Ground truth is in general good, but bad in certain difficult
situation (e.g. some regions lack illumination and the limited
rendering time). In these hard case, we perform even better.
For instance, Figure 11 gives a comparison between our results
and ground truth in noise standard. Figure 11 (a) are ground
truths with close observation, Figure 11 (b) are our results with
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TABLE I

THE AVERAGE LPIPS VALUE AND SSIM VALUE BASED ON DIFFERENT
METHODS. LPIPS OF OUR METHOD IS THE SMALLEST AND SSIM OF
OUR METHOD IS THE LARGEST, BOTH METRICS INDICATE THAT OUR
RESULTS ARE CLOSEST TO GROUND TRUTHS

CycleGAN  CAN  pix2pix  U-Net  Ours
LPIPS | 0.089 0.064 0.054 0.049  0.048
SSIM 1 0.551 0.681 0.690 0.729  0.742

close observation. Our results can get similar visual effect with
ground truths globally, while there is strong noise existing in
ground truths due to the limited rendering time. However, our
network don’t have this issue and is equipped with function of
automatically denoising. We owe this phenomenon (denosing)
to a well-combined perceptual loss function.

2) Perceptual Metric: Recently, Zhang et al. [42] pro-
posed a new perceptual metric to compare the similar-
ity of two images, named learned perceptual image patch
similarity (LPIPS) metric. LPIPS has advantages over tradi-
tional metrics, such as mean squared error (MSE), structural
similarity index (SSIM [43]), Peak Signalto Noise Ratio
(PSNR), and is closer to human choices. Thus, we choose
LPIPS as the main metric to measure the similarity between
ground truths and results produced by networks (CAN,
pix2pix, CycleGAN, U-Net and Ours). The second line
of Table I stores the average value of LPIPS. Note that the
network we use for collecting LPIPS is AlexNet [44], and
images from test set of each method are used to calculate the
average value of LPIPS. Besides, smaller LPIPS value means
closer to ground truth. In Table I, the methods on the right
side indicate better performance. Specifically, LPIPS value of
ours is 0.048, which is the smallest one. It indicates that our
results are closest to ground truths. Further, we also provides
traditional metric (SSIM) in the third line of Table I. Notice
that, SSIM value of our approach is 0.742, the largest one,
verifying that images generated by our approach are closest to
ground truth again.

3) User Study: In Chen and Koltun [4] experiment, ran-
domized pairwise images are displayed to users for judge-
ment. Similarly, we imitate their experimental protocol to
randomly combine an image synthesized by our approach with
another image synthesized by other methods (CAN, pix2pix,
CycleGAN, U-Net, Ground truth), and let participants judge
which one has higher quality (less blur, artifacts and noise;
reasonable illumination variation, e.g., the objects closer to
light source should be brighter) and is more realistic (mostly
depends on participants’ first impression) in seconds with
a total of 50 pairs. In order to get precise metrics, all of
our participants are graduate students who major in image
processing and about thirty-three percent of them are female.
Each participant is given at most 3 minutes to make judge-
ments from 50 randomly combined image pairs (each pair
about 3 seconds), totally 24 participants. Table II reports the
results of comparison, and the percentage represents the rate
of our approach is better than others. Across the statistical
results, our approach outperforms CAN, pix2pix, CycleGAN,
U-Net and Ground truth in 73.16%, 91.52%, 97.83%, 63.64%

5989

(a) Scene_0

(c) Scene_2 ] (d) Scene 3

Fig. 13. We adopt four public available scenes [45], which are more complex,
for finetune and test. (a) Bedroom by SlykDrako. (b) The Grey & White Room
by Wigd2. (c) The White Room by Jay-Artist. (d) The Modern Living Room
by Wig42. All images are rendered by Mitsuba, with sample 1024.

and 75.95%, respectively. It is interesting that our results have
advantage over ground truth. Inferring the size of images
(360 x 480) we used for user study were larger, which made
noise obvious in some regions due to limited rendering time
in ground truth.

D. Generalization

The color rendering in PBRS [1] are not optimized for
quality but speed, so that the renderings are noisy and of
low physics related effects such as specular highlight and soft
shadow. To fully verify the capability of our model capturing
physically based rendering effect, we finetune our model with
a small amount but high quality physically based render-
ing. This is a reasonable training schema in practice since
high quality physically based rendering can be computational
expensive and prohibitive to produce in large scale. To get 3D
scenes with better material set up, we pick four scenes from
public community [45], in which three are used for generating
training data, and the other one for testing. We made necessary
but minimal modification to make physically based rendering
possible on these scenes, such as adding a HDR environment
map, etc. In each scene, we randomly sample 128 cameras
following Zhang et.al [1]. Examples of rendering from the
four scenes are shown in Figure 13.

1) Test on Complex Scenarios: Figure 14 shows our results.
Please note that the testing scene is precluded from the training
data. As can be see, the network not only converts the color
tone to more realistic, but also produces certain amount of
specular reflection on the floor and soft shadows cast by
objects. These physically based rendering related effects in
our results may not be as strong as in the ground truth,
but indicates that the network learns to compose the light
reflections using the geometry and illumination from the input,
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TABLE II

RESULTS OF BLIND SELECTION OF RANDOMLY COMBINED PAIRS. THE PERCENTAGE REPRESENTS IMAGES SYNTHESIZED BY OUR APPROACH ARE
JUDGED HIGHER QUALITY AND MORE REALISTIC THAN CORRESPONDING IMAGES SYNTHESIZED BY OTHER METHODS
(CAN, P1x2P1X, CYCLEGAN, U-NET) AND GROUND TRUTH

Ours > CAN  Ours > pix2pix ~ Ours > CycleGAN ~ Ours > U-Net ~ Ours > Ground truth
Percentage 73.16% 91.52% 97.83% 63.64% 75.95%

color shading _ shading

Ground truth

PBR-Net

(a) Test in scene_1 (b) Test in scene 2

Fig. 14. Test in complex scenes. (a) Test in scene_1. (b) Test in scene_2. The first and second rows are groundtruth images. The third and fourth rows are
fintuned PBR-Net predictions. Such predictions have similar illumination variation and specular reflections as groundtruth.

(a) U-Net (b) PBR-Net (shading) (c) PBR-Net (color) (d) GT

Fig. 15. Test in scene_2 with different models. (a) Transform directly using U-Net. (b) Shading images from PBR-Net. (c) Color images from PBR-Net.
(d) Ground truth. Both networks are fine-tuned on scene_0 and scene_3. PBR-Net prediction (b), (c) has stronger specular reflections than U-net prediction
(a). Please note the sofa armrests.

instead of barely a pixel-wise color or style transfer. Moreover, 2) The Effectiveness of PBR-Net: We also verify the neces-
our model generates a rendering in 145 ms while the GT would  sity of supervising shading in the middle under complex sce-
require 300 sec. Potentially with more high quality training narios. Like in section B (b) and section C (a), we compare to
data, the result quality may be further improved. the model (i.e. U-Net) that directly produce rendering without
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constraint on shading images, and the results are shown in
Figure 15. Consistent with what we found in section B (b) and
section C (a), the direct transformation model has weakness
in illumination variation capture. As shown in Figure 15,
there are stronger specular reflections in PBR-Net prediction
Figure 15 (b), (c¢) than in U-Net prediction Figure 15 (a).
Specifically, the specular reflections on sofa armrests.

VI. CONCLUSION

In this paper, we propose a network architecture for speed-
ing up physically based rendering given necessary rendering
information. This architecture uses shading image as interme-
diate supervision, which is inspired by intrinsic decomposition.
At last, a composition network is designed to improve perfor-
mance. By analyzing the character of loss function, we make
our approach robust to noise.

In the future, our goal is to generate more photo-realistic
images, even videos through network by solving following
obstacles. Firstly, the existing datasets have margin with
photo-realistic images because of material and illumination,
etc. At present, the free high-quality 3D models are very
few and synthesize such photo-realistical images are time-
consuming. Maybe a feasible approach to acquire these infor-
mation (e.g., photo-realistical image, geometry, material, illu-
mination) is from the real word, and most of these information
are accessible. Nonetheless, there are obstacles in material
estimation from a photo-realistical image, and this will be
our future work. Secondly, only a HDR environment map and
some indoor light sources are used in synthesizing training
datasets. Thus, diversifying the illumination seems beneficial
in generating various images and facilitating generalization.
Lastly, only a single image is rendered in this paper, however,
it is not enough for video generation. Because there is a
common problem (e.g., flicker) in video synthesis due to tem-
poral inconsistency. A solution to this problem is to explicitly
adopt temporal constraints. For example, taking optical flow,
between two consecutive frames, as a constraint. What is
more, some specifically-designed network structures also seem
helpful, such as LSTM [46].

REFERENCES

[1]1 Y. Zhang et al., “Physically-based rendering for indoor scene under-
standing using convolutional neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5057-5065.

[2] A. Meka et al, “LIME: Live intrinsic material estimation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6315-6324.

[3] G. Liu, D. Ceylan, E. Yumer, J. Yang, and J.-M. Lien, “Material editing
using a physically based rendering network,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2280-2288.

[4] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1520-1529.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

[7]1 E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone
reproduction for digital images,” ACM Trans. Graph. (TOG), vol. 21,
no. 3, pp. 267-276, Jul. 2002.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
[31]
[32]

[33]

5991

P. Debevec and S. Gibson, “A tone mapping algorithm for high con-
trast images,” in Proc. 13th Eurographics Workshop Rendering, 2002,
pp. 145-156.

M. Janner, J. Wu, T. D. Kulkarni, I. Yildirim, and J. Tenenbaum, “Self-
supervised intrinsic image decomposition,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5938-5948.

Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf, “Revisiting deep intrinsic
image decompositions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 8944-8952.

M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:
From Theory to Implementation. San Mateo, CA, USA: Morgan Kauf-
mann, 2016.

C. R. A. Chaitanya et al., “Interactive reconstruction of Monte Carlo
image sequences using a recurrent denoising autoencoder,” ACM Trans.
Graph., vol. 36, no. 4, pp. 1-12, Jul. 2017.

A. Beers et al., “High-resolution medical image synthesis using progres-
sively grown generative adversarial networks,” 2018, arXiv:1805.03144.
[Online]. Available: http://arxiv.org/abs/1805.03144

F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo
style transfer,” vol. 2, 2017, arXiv:1703.07511. [Online]. Available:
https://arxiv.org/abs/1703.07511

R. Mechrez, E. Shechtman, and L. Zelnik-Manor, “Photorealistic style
transfer with screened Poisson equation,” 2017, arXiv:1709.09828.
[Online]. Available: http://arxiv.org/abs/1709.09828

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional GANS,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8798-8807.

X. Qi, Q. Chen, J. Jia, and V. Koltun, “Semi-parametric image synthesis,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp- 8808-8816.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967-5976.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242-2251.

E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt.
Soc. Amer., vol. 61, no. 1, p. 1, Jan. 1971.

A. Bousseau, S. Paris, and F. Durand, “User-assisted intrinsic images,”
ACM Trans. Graph., vol. 28, no. 5, pp. 1-10, Dec. 2009.

L. Shen, P. Tan, and S. Lin, “Intrinsic image decomposition with non-
local texture cues,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1-7.

Y. Weiss, “Deriving intrinsic images from image sequences,” in Proc.
8th IEEE Int. Conf. Comput. Vis. (ICCV), 2001, pp. 68-75.

J. T. Barron and J. Malik, “Shape, illumination, and reflectance from
shading,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8,
pp. 1670-1687, Aug. 2015.

T. Narihira, M. Maire, and S. X. Yu, “Learning lightness from human
judgement on relative reflectance,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 2965-2973.

Q. Zhao, P. Tan, Q. Dai, L. Shen, E. Wu, and S. Lin, “A closed-
form solution to retinex with nonlocal texture constraints,” [EEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1437-1444,
Jul. 2012.

A. S. Baslamisli, H.-A. Le, and T. Gevers, “CNN based learning using
reflection and retinex models for intrinsic image decomposition,” 2017,
arXiv:1712.01056. [Online]. Available: http:/arxiv.org/abs/1712.01056
L. Lettry, K. Vanhoey, and L. van Gool, “Unsupervised deep
single-image intrinsic decomposition using illumination-varying image
sequences,” 2018, arXiv:1803.00805. [Online]. Available: http://arxiv.
org/abs/1803.00805

G. Han, X. Xie, J. Lai, and W.-S. Zheng, “Learning an intrinsic image
decomposer using synthesized RGB-D dataset,” IEEE Signal Process.
Lett., vol. 25, no. 6, pp. 753-757, Jun. 2018.

Blender. Accessed: 1994. [Online]. Available: http://www.blender.org/
Maya. Accessed: 1998. [Online]. Available: https://www.autodesk.com.
sg/products/maya/overview

Mitsuba Physically Based Render. Accessed: 2010. [Online]. Available:
http://www.mitsuba-renderer.org/

Q. Chen, J. Xu, and V. Koltun, “Fast image processing with fully-
convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2516-2525.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 30,2020 at 02:01:47 UTC from IEEE Xplore. Restrictions apply.



5992

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 30,2020 at 02:01:47 UTC from IEEE Xplore. Restrictions apply.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., 2015, pp. 234-241.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 694-711.

S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 190-198.
D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

A. S. Glassner, An Introduction to Ray Tracing. Amsterdam, The
Netherlands: Elsevier, 1989.

L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 2414-2423.

A. Dosovitskiy and T. Brox, “Generating images with perceptual similar-
ity metrics based on deep networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 658-666.

H. Barrow and J. Tenenbaum, “Recovering intrinsic scene characteris-
tics,” Comput. Vis. Syst, vol. 2, pp. 3-26, Apr. 1978.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unrea-
sonable effectiveness of deep features as a perceptual metric,” 2018,
arXiv:1801.03924. [Online]. Available: http://arxiv.org/abs/1801.03924

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

B. Bitterli. (2016). Rendering Resources.
https://benedikt-bitterli.me/resources/

H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in Proc.
15th Annu. Conf. Int. Speech Commun. Assoc., 2014, pp. 1-5.

[Online]. Available:

Peng Dai (Student Member, IEEE) received the B.E.
degree in electronic engineering from the University
of Electronic Science and Technology of China
(UESTC), Chengdu, China, in 2017, where he is
currently pursuing the master’s degree with the Insti-
tute of Image Processing, School of information and
communications engineering. His research interests
include computer vision and computer graphics.

Zhuwen Li (Member, IEEE) received the B.E.
degree in computer science from Tianjin University,
in 2008, the master’s degree in computer science
from Zhejiang University, in 2011, and the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, National University of Singapore,
in 2014. He is currently a Research Scientist at Nuro,
Inc. He is working on perception in autonomous
driving, specifically in 3D structure recovery, motion
analysis, point cloud analysis, and object detection.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Yinda Zhang (Member, IEEE) received the bach-
elor’s degree from Tsinghua University, Beijing,
China, and the master’s degree from the National
University of Singapore, and the Ph.D. degree
in computer science from Princeton University.
He is currently a Research Scientist at Google.
His research interests lie at the intersection of
computer vision, computer graphics, and machine
learning. He is actively working on empowering
3D vision and perception via machine learning,
including dense depth estimation, 3D shape analysis,
and 3D scene understanding.

Shuaicheng Liu (Member, IEEE) received the B.E.
degree from Sichuan University, Chengdu, China,
in 2008, and the M.S. and Ph.D. degrees from
the National University of Singapore, Singapore,
in 2010 and 2014, respectively. In 2014, he joined
the University of Electronic Science and Technology
of China, where he is currently an Associate Profes-
sor with the School of Information and Communica-
tion Engineering, Institute of Image Processing. His
current research interests include computer vision
and computer graphics.

Bing Zeng (Fellow, IEEE) received the B.Eng. and
M.Eng. degrees in electronic engineering from the
University of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 1983 and 1986,
respectively, and the Ph.D. degree in electrical engi-
neering from the Tampere University of Technology,
Tampere, Finland, in 1991. He was a Postdoctoral
Fellow with the University of Toronto from 1991 to
1992, and as a Researcher with Concordia University
from 1992 to 1993. He then joined The Hong Kong
University of Science and Technology (HKUST).
After 20 years of service at HKUST, he returned to UESTC in 2013, through
China’s 1000-Talent-Scheme. At UESTC, he leads the Institute of Image
Processing to focus on image and video processing, 3D and multi-view
video technology, and visual big data. During his tenure at HKUST and
UESTC, he has graduated over 30 master’s and Ph.D. students, received
over 20 research grants, filed eight international patents, and authored or
coauthored over 250 articles. He was elected as a Fellow of the IEEE
in 2016, for contributions to image and video coding and received the Second
Class Natural Science Award (the first recipient) from the Chinese Ministry
of Education in 2014. He was the General Co-Chair of the IEEE VCIP-
2016, Chengdu, in 2016, and serves as the General Co-Chair of PCM-2017.
He served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY for eight years and received the
Best Associate Editor Award in 2011. He is currently on the Editorial Board
of the Journal of Visual Communication and Image Representation.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


