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Abstract— Video coding focuses on reducing the data size of
videos. Video stabilization targets at removing shaky camera
motions. In this paper, we enable video coding for video stabi-
lization by constructing the camera motions based on the motion
vectors employed in the video coding. The existing stabilization
methods rely heavily on image features for the recovery of
camera motions. However, feature tracking is time-consuming
and prone to errors. On the other hand, nearly all captured
videos have been compressed before any further processing and
such a compression has produced a rich set of block-based motion
vectors that can be utilized for estimating the camera motion.
More specifically, video stabilization requires camera motions
between two adjacent frames. However, motion vectors extracted
from video coding may refer to non-adjacent frames. We first
show that these non-adjacent motions can be transformed into
adjacent motions such that each coding block within a frame
contains a motion vector referring to its adjacent previous frame.
Then, we regularize these motion vectors to yield a spatially-
smoothed motion field at each frame, named as CodingFlow,
which is optimized for a spatially-variant motion compensation.
Based on CodingFlow, we finally design a grid-based 2D method
to accomplish the video stabilization. Our method is evaluated in
terms of efficiency and stabilization quality, both quantitatively
and qualitatively, which shows that our method can achieve
high-quality results compared with the state-of-the-art methods
(feature-based).

Index Terms— CodingFlow, video stabilization, video coding,
camera motion, mesh grid, spatial-temporal optimization.

I. INTRODUCTION

V IDEOS captured by moving devices, e.g., hand-held
cameras or cameras mounted on vehicles, often suffer

from strong shakiness, which severely damages the viewing
experiences. Video stabilization [1]–[9] tries to improve the
video quality by removing unwanted camera motions, thus
rendering videos with smooth transitions in the temporal
domain. The existing video stabilization methods heavily rely
on image features [10] for the recovery of camera motions.
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Some methods [1], [5] match image features between neigh-
boring frames while others [2], [3] track them for a certain
range of frames (e.g., 30 consecutive frames [11]). Feature
matching and tracking are very time-consuming, e.g., they take
70% ∼ 80% of the run-time of the whole stabilization system.
Moreover, they are sensitive to the type of camera motions and
scene contents. For instance, video frames under quick camera
motions (e.g., quick swing or fast zooming) often yield low-
quality features so that the number of matched features or
the length of tracked motions is limited. Textureless regions is
another challenge that disturbs a high-quality feature detection.
On the other hand, some methods [12], [13] rely on gyroscopes
for the recovery of camera motions. However, gyroscopes can
only smooth rotational motions, leaving translational motions
uncompensated. Furthermore, gyroscopes are not applicable to
all levels of cameras.

Video coding aims at removing spatial (intra coding mode)
and temporal (inter coding mode) redundancies within the raw
video data. Nearly all captured videos have been compressed
before storage and distribution, because an uncompressed
video can easily reach dozens of gigabytes. In the inter
coding mode [14], [15], motion vectors of image blocks are
estimated across multiple frames. We find that these motion
vectors not only link image blocks with similar contents, but
also provide strong cues for revealing the camera motion.
However, these valuable motion cues are ignored completely
in all existing feature-based video stabilization methods. In
this work, we propose to use the motion vectors extracted
from the video coding for video stabilization. Because all
processing associated with image features (feature detection,
feature matching, and feature tracking) is no longer needed,
our proposed method can offer a much lower computational
complexity. In the meantime, we will show that our method
can provide a competitive performance as compared with the
feature-based methods

Early stabilization methods [1], [7], [16] deal with global
motions that can be described by a single parametric trans-
formation model (e.g., affine or homography). Nevertheless,
videos containing parallax and depth variations often require
spatially-variant motion representations, where each part of a
frame can be smoothed differently, leading to smaller motion
residuals. Therefore, we are more interested in methods that
can handle spatially-variant motions. In general, these methods
can be classified into two categories, smoothing long feature
tracks [2], [3], [11], [17] and smoothing multiple transforma-
tion models [5], [6], [8]. If long feature tracks are present,
the full 3D or partial 3D structures can be recovered, and
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smoothing of them can lead to a high-quality stabilization.
However, long feature tracks are usually hard to obtain in
consumer videos. Especially, both the track length and the
number of tracks drop quickly when the camera undergoes a
quick rotation or zooming.

On the other hand, smoothing of multiple transformation
models is more robust to various types of camera motions as
it only requires the feature matching between adjacent frames.
Here, a single frame is usually divided into several parts and
a local transformation model is estimated for each part, thus
yielding multiple affines [8], homographies [5], or even non-
parametric dense flows [6] that can represent spatially-variant
motions. In this work, we follow the multiple transformation
approach, but replace the feature matching by the motion
vectors extracted from the video coding.

Notably, motion vectors extracted in video coding may not
necessarily correspond to the camera motion, as they are
not designed for estimating the camera motion. In fact, a
motion vector in video coding refers to a place that yields the
minimum compensation residue. After extensive experiments,
not surprisingly, we have found that the majority of motion
vectors do coincide with the camera motion. That is, if an
image block moves to a place according to the camera motion
(e.g., the optical flow of that block), this place also has a
high probability to yield the minimum residue. Of course,
we also notice that a small part of “outliers” violates the
camera motion, which would be regularized in our method.

In this paper, we propose a new motion model for video
stabilization, named as CodingFlow, that is constructed from
the motion vectors estimated during the video coding proce-
dure. CodingFlow is a spatially-smoothed and sparse motion
field that describes camera motions between adjacent frames.
For P frames (predictive frames) and B frames (bidirectional
references), we design two recursive algorithms to manipulate
the inter motions of image blocks at frame t so that each only
refers to its previous frame t − 1. Then, a regular grid mesh
is placed onto each frame. The motion vector of each grid is
propagated to its mesh vertices. Notably, a mesh vertex may
receive multiple motion vectors. CodingFlow is produced by
assigning each vertex an unique motion vector through median
filters for spatial smoothness. Next, the path optimization is
conducted on the vertex profiles, which are motion vectors
collected at the same vertex position through CodingFlow over
time. Due to the property of strong spatial smoothness, vertex
profiles can be optimized independently such that the path
optimization can be conducted in parallel for an improved
efficiency. Finally, the stabilized frames are rendered according
to the smoothed vertex positions. In summary, the main
contributions of our work are:

• A method of manipulating inter-frame motion vectors
such that these manipulated motion vectors of each frame
only refers to its adjacent previous frame.

• CodingFlow, a sparse motion field that is generated from
video coding for spatially-variant motion representation
and stabilization.

The rest of the paper is organized as follows. Sec. II presents
an overview of the related works. Sec. III discusses details on
how the motion vectors are extracted and then manipulated

with respect to P-frames and B-frames. Sec. IV presents
the estimation of the CodingFlow. Sec. V discusses how to
stabilize CodingFlow for video stabilization. Sec. VI discusses
our approach in several aspects. Experiments are presented
in Sec. VII with comparisons to previous approaches. Finally,
Sec. VIII concludes the paper.

II. RELATED WORKS

A. Video Coding

Video coding focuses on reducing the data size by removing
redundancies in the raw video data. There are two types of
redundancies in the raw video data: the spatial redundancy
and the temporal redundancy. The former one refers to the
structural similarity between neighboring pixels within a single
frame and the later one stands for the content similarity across
several adjacent frames. In the classical video coding, two
coding modes, i.e., the intra coding and the inter coding,
are designed to remove these two types of redundancies
accordingly. More specifically, removing of redundancies in
video frames is performed on the block-by-block basis. In both
coding modes, the discrete cosine transform (DCT) [18],
quantization, and entropy coding are often utilized to compress
each image block.

In the redundency-removing procedure, DCT plays a
rather important role as it transforms an image block in
the pixel domain into the frequency domain so that the
block’s energy is much more compacted into only a few
coefficients. Recently, several new transforms, such as the
directional DCT (DDCT) [19], [20] and some novel unitary
transforms [21], have been proposed to further improve the
performance. Meanwhile, the integer DCT [22] has been
developed to support the hardware-based implementation.
Furthermore, the rate-distortion optimization (RDO) [23]
principle has been introduced in video coding to balance the
bit-consumption and coding distortion during the compression.

Meanwhile, it has been demonstrated for a long time that
removing of temporal redundancies would become much more
efficient through the so-called motion-compensated predic-
tion (MCP) [24], [25]. Because of this, MCP has been adopted
in all video codecs to construct the inter coding mode. In MCP,
a motion vector (MV) is used to identify a predictive block
from the previously-coded frames for the current block. The
procedure of searching for the best MV is called motion
estimation (ME). The most straightforward way to find the
optimal MV is to do an exhaustive search. However, such
a searching strategy leads to a high cost. To solve this
problem, a large number of fast search algorithms have been
proposed. Several widely-recognized algorithms are the three-
step search (TSS) [26], the new three-step search (NTSS) [27],
the four-step search (4SS) [28], and the diamond-shaped
search [29].

B. Video Stabilization

Video stabilization methods can be roughly categorized
into 3D [2], [9], [30], [31], 2D [1], [5]–[7], [16] and
2.5D [3], [11] methods according to their different motion
models.
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Liu et al. proposed a 3D method that relies on the full
3D reconstruction [2]. Liu et al. [30] and Smith et al. [31]
adopted a depth camera and light-field camera for the robust
3D recovery. Moreover, plane constraints can be introduced
for the better regularization [9], [32]. Meanwhile, gyroscopes
were also adopted for the efficient recovery of 3D orienta-
tions [12], [13]. Jia and Evans constrained the 3D rotations
during the path smoothing [33]. In general, these full 3D
reconstruction is fragile because of tracking failures and scene
degenerations.

To solve this problem, some 2.5D methods can relax the
requirement of full 3D reconstruction to some partial 3D
information. For instance, Liu et al. proposed to smooth
feature tracks in a subspace to maintain 3D relationship
during stabilization [3], and Goldstein and Fattal used epipolar
geometry for 3D coherence maintaining [11]. Such partial
3D information is embedded in the long feature trajectory.
However, long feature tracks are hard to obtain in many
consumer videos due to quick camera motions.

In contrast, the 2D methods only match features between
neighboring frames. Thus, they are more robust to different
types of camera motions. Early 2D methods estimated a
single homography between each pair of two neighboring
frames and then smoothed all estimated homographies after
cancatenating them, referred to as the 2D camera path, for
stabilization [1], [4]. More recently, Grundmann et al. esti-
mated a single homography between two adjacent frames
and employed cinematographic rules for the camera path
design [7]. Then, the single homography is divided into
a homography array for the rolling shutter correction [8].
Meanwhile, Liu et al. adopted “as-similar-as-possible” image
warping for spatially-variant motion estimation [5] in which
the bundled camera paths were approximated and smoothed
for the stabilization. User interactions could further improve
the performance [34]. Liu et al. estimated a dense and
spatially-smoothed optical flow between two adjacent frames
and upgraded the raw flow into spatially smooth steadflow for
stabilization [6]. Recently, the dense flow is simplified into
a sparse flow according to image feature matches, aiming at
online processing [35]. In this work, we adopt a similar idea,
but estimate a spatially-smoothed sparse flow using the motion
vectors extracted from the video coding.

III. INTER MOTION MANIPULATION

Although the newest video coding standard is H.265/HEVC,
we choose to describe our inter motion manipulation based
on the H.264/AVC framework because its structure is not
as complicated as H.265/HEVC. Note that exactly the same
processing applies to H.265/HEVC. In H.264/AVC, each frame
is processed in units of macroblocks of size 16 × 16. Each
macroblock can be encoded in intra or inter mode, where
the former aims at reconstructing the frame using samples in
the current frame while the latter uses motion-compensated
prediction from one or more reference frames. We focus on
the inter mode in this work.

In H.264/AVC, a tree-structured motion compensation strat-
egy is supported, where each macroblock can be further
divided into smaller sizes, including 16 × 8, 8 × 16, 8 × 8,

Fig. 1. An example of inter motion manipulation on P-frames. All blocks
are with the same spatial location at different frames. Each block refers to
a previous frame. The motion vectors are indicated by solid arrows. The red
arrow indicates the desired inter motion at the fourth frame, which will be
derived by our inter-motion manipulation algorithm. The intermediate motion
vectors are shown in dashed arrows.

8 × 4, 4 × 8, and 4 × 4. The division is performed by the
encoder according to a rate-distortion optimization (RDO). For
example, some image regions in one frame are divided into
16 × 16 due to their homogeneities, while others with rich
image details may correspond to a smaller size.

Upon receiving the compressed bit-stream, we can easily
extract all motion vectors. More importantly, we know to
which block at the current frame a motion vector corresponds,
what is the block size, and to which reference frame the motion
vector indicates. In our inter motion manipulation, we fix our
processing unit with the size 4 × 4. That is, if a block has a
bigger size, its motion vector is duplicated and assigned to all
processing units (of size 4 × 4) in the block. For example, a
8 × 16 block is divided into eight 4 × 4 processing units and
all units share the same motion vector.

In general, a video encoder uses the 4:2:0 YUV format for
motion prediction, where the luminance component Y is twice
of height and width as two chrominance components U and V.
In this work, we only extract motion vectors from the lumi-
nance component for the motion manipulation. The resulted
CodingFlow is resized accordingly for the chrominance
components.

There are three types of frames in video coding, i.e., I , P ,
and B frames. An I-frame is regarded as the key frame. It is the
base frame that is referred by P-frames and B-frames. In our
case, the first frame is set to be I. A P-frame can refer to
its previously-coded frames (not necessarily the neighboring
frame) for motion prediction. A B-frame can refer to one
past and one future coded frames (again, not necessarily the
neighboring frames).

A. Manipulation of P-Frame

Figure 1 shows an example of inter motion manipulation
of P-frames. In this example, we show five blocks with the
same spatial location in five consecutive frames, in which the
first frame is an I-frame and the rest are P-frames. Except for
the first one, each of the other 4 blocks refers to one previous
frame for motion prediction, where the motion vectors are
indicated by solid arrows. Specifically, the first and second
blocks refer to the I-frame, the third block refers to the second
frame, and the fourth block refers to the first frame. Notice
that these referrings are generated automatically by the video
encoder because they offer the best coding performance.
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Algorithm 1 Calculate Vi,i−1 for P Frames

Fig. 2. An example of inter motion manipulation on B-frames. A B-frame
can refer to two directions for motion predictions. In the hierarchical coding,
P-frames are coded before B-frames. The red arrow indicates the desired inter
motion at the third frame.

Our job here is to derive the desired motion vector for the
fourth block that needs to refer to the third frame (as indicated
by a red arrow).

Let us denote a motion vector as Vi, j , where i and j are
frame indexes, pointing from i to j . For the example shown
in Fig. 1, the motion vectors of the 2nd, 3rd, and 4th blocks
are denoted as V2,0, V3,2, and V4,1, respectively. In general,
two motion vectors can be added up:

Vi,k = Vi, j + Vj,k, (1)

where k is another frame index (i �= j �= k). Similarly, we
can also perform the substraction as:

Vi, j = Vi,k − Vj,k . (2)

In the example of Fig. 1, we want to obtain the motion
vector V4,3, which can be obtained as V4,3 = V4,0 − V3,0,
where V4,0 and V3,0 are dashed arrows. Although V4,0 and V3,0
do not exist in Fig. 1, they can be obtained as V4,0 =
V4,1 + V1,0 and V3,0 = V3,2 + V2,0. Finally, V4,3 is obtained as
V4,3 = V4,1 + V1,0 − V3,2 − V2,0.

In fact, the desired neighboring motion vector Vi,i−1
can always be obtained by manipulations of the available
motion vectors. The manipulation algorithm is summarized
as Algorithm 1.

B. Manipulation of B-Frame

We follow the hierarchical coding structure where P-frames
are encoded before B-frames. A P-frame can refer to a
previous P-frame or I-frame, but not B-frame. A B-frame can
refer to two directions or either of these two directions for
motion predictions. Fig. 2 shows an example of five blocks
of the same spatial location at two B-frames, two P-frames
and one I-frame. Again, all directional referrings as well as

Algorithm 2 Calculate Vi,i−1 for B Frames

Fig. 3. Blocks in a B-frame can refer to different previous and future frames
(the light blue arrows). After the motion manipulation, all blocks point to the
previous neighboring frame (the red arrows).

the frame types are determined by the video encoder because
they provide the best coding performance. Here, our job is to
find the motion vector V3,2 indicated by the red arrow at the
third frame.

In this example, two candidates are available: V3,2 = V3,1+
V1,0 − V2,0 and V3,2 = V3,1 + V1,0 − (

V3,4 + V4,2 + V2,0
)
. We

can choose the one with the shortest path or the one with
the minimum residual. The former provides the smallest shift
while the latter evaluates the quality of motion vectors. To
calculate the residual, we need to extract the residual error
from the coded residual layer and compute the sum of squared
difference (SSD) error, which is time consuming. Therefore,
we take the candidate with the shortest path. In this example,
the first candidate will be chosen.

Note that P-frames are usually separated by B-frames.
Therefore, after calculating neighboring motions of all
B-frames, bridges are built for P-frames so that all frames
can point to their previous adjacent frames. The algorithm for
manipulating B-frames is summarized as Algorithm 2.

Figure 3 shows an example of our motion manipulations.
Initially, each block in a B-frame can refer to either direction
with a different frame interval. After the manipulation, all
blocks refer to their adjacent previous frame.

C. Motion Tracking vs. Motion Profile

Before we move on to the estimation of the camera motion,
we would like to clarify the difference between motion track-
ing and motion accumulation. Motion tracking originates for
image features, in which features are detected on one frame
and tracked to the subsequent frames [10]. For image blocks,
tracking will lead a block to different places at different
frames. Fig. 4 (top) shows an example in which blocks move
according to their motions. Note that some blocks may move
outside of a frame, thus terminating the tracking. On the other
hand, motion accumulation always collects motions at the
same spatial location, leading to a dense coverage of the whole
frame, both spatially and temporally. Motion accumulation is
first introduced in SteadyFlow [6], where optical flows are
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Fig. 4. Motion tracking vs. motion profile. The top row shows an example
of the motion tracking where blocks follow their motions to different places.
Some of the blocks may move outside the frame boundary. The bottom row
shows an example of motion profile where the motion from the same location
is collected over time.

estimated between two neighboring frames and a pixel profile
is produced by collecting motions at a pixel location over
time. It has been shown in [6] that the motions recorded in
the pixel profile are quite similar to the motions obtained by
the corresponding feature tracking, assuming that the tracking
starts at the same position with the corresponding motion
within the pixel profile.

Here, we borrow the similar idea to construct a motion
profile by collecting all motion vectors obtained after the
motion manipulation described above.

IV. CODINGFLOW ESTIMATION

CodingFlow is a sparse but regular grid of motions with
strong spatial smoothness, generated by manipulating the
motion vectors that are extracted from a compressed video
bitstream. In this section, we discuss how CodingFlow is
estimated and regularized.

The manipulated inter motion vectors are raw motion vec-
tors (red arrows in Fig. 3). These raw motion vectors are
usually not applicable for video stabilization because they may
contain “errors” that are inconsistent with the camera motion.
Note that these “erroneous” motions are actually good motions
in the context of video coding, as they generate the minimum
residues. In the context of video stabilization, we consider
them as errors because they do not reveal the camera motion.

There are several reasons that these errors may occur.
First, motions extracted on the dynamic objects are certainly
inconsistent with the camera motion. Second, for textureless
regions, such as blue sky, sea, white wall, and road, no
differentiable textures exist. The block-matching algorithm for
motion estimation in these regions is not well constrained
so that a random location may provide the best match.
Third, the presence of repetitive structures might confuse the

Fig. 5. Left: the raw motion vectors are noisy (red arrows). Right: after a
global motion regularization.

blocking-matching. Repetitive structures have been utilized
in 3D reconstruction [36], image super-resolution [37], and
patch match for image editing [38]. They are preferred in
video coding, as they provide additional candidates during
the motion prediction. However, motions at these regions are
usually inconsistent with the camera motion. The erroneous
motions should be excluded in the video stabilization: smooth-
ing them otherwise would introduce severe artifacts.

It is important to point out that our extensive experiments
reveal that a majority of matches does follow the camera
motion, while only a small amount of them suffers from
the inconsistency. Therefore, we can correct these erroneous
motions by the correct ones. This regularization procedure
consists of two steps, a global pre-process to reject outliers
and a local refinement to provide further regularization during
the CodingFlow estimation.

A. Global Motion Correction

We use a global homography to identify outliers. Referring
to Fig. 5 (left), outliers in the textureless regions can be iden-
tified and corrected using a global homography. In particular,
a global homography F(t) is estimated with RANSAC outlier
removal [39] using raw motions. Then, global motion vectors
at all blocks can be computed using the estimated global
homography. Specifically, we transform the center coordinates
of each block by the homography, and the global motion vector
of a block is the difference between the transformed center
and the original center. Notably, the whole frame shares a
global homography, but their global motion vectors are not the
same. For example, if a frame undergoes a clockwise in-plane
rotation, a block on the top-left moves towards the up-right
direction, but the block on the bottom-right moves towards
the bottom-left direction. As a result, each vertex has two
motion vectors, the global one and the local one. The angle
between them is calculated. If the angle is small, we retain the
local motion; otherwise we replace the local motion with the
global motion. Fig. 5 (right) shows the result after the motion
correction.

Notably, it is of particular importance to overwrite the
problematic motions before conducting the stabilization.
Fig. 6 shows two examples: with and without the global
motion correction. The first example contains some repetitive
structures (windows on the background). For a given window,
the block-matching algorithm may pick a similar but a
different window, thus yielding the motions that could not
reveal the camera motion. In the second example, the sky has
fewer textures to constrain the block-matching. Local motions
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Fig. 6. With and without global motion correction. (a) Without motion
correction, the stabilization results suffer from content distortions (highlighted
by the arrows). (b) Motion correction can remove such distortions effectively.

at these regions do not coincide with the camera motion.
Consequently, smoothing these erroneous motions would
lead to severe content distortions as verified by the stabilized
results. Specifically, we extracted 14080 motion vectors within
a frame for each example shown in Fig. 6. We corrected
23% and 34% of the motions for the first and the second
example. Empirically, the percentage of the correction is
scene dependent, ranging from 10% ∼ 40%. More discussions
will be given in the experiment section.

B. CodingFlow Motion Model Estimation

CodingFlow is produced at each frame. Fig. 7 shows an
example of producing the CodingFlow at one frame. Specif-
ically, a regular grid mesh is placed onto each frame. The
motion of a block (Fig. 7(a)) is propagated to the nearby mesh
vertices (Fig. 7(b)). Each block can contribute motion vectors
to its surrounding mesh vertices. As a result, a mesh vertex
receives multiple motion vectors from the nearby blocks.
However, an unique motion vector is required for each vertex,
which is achieved by applying a median filter to all candidate
motions (Fig. 7(c)). The median filter is frequently used in
the dense optical flow estimation. It has been considered as
the secret of a high-quality optical flow estimation [40]. It not
only rejects errors but also enforces the spatial smoothness.
Here, we borrow the similar idea for our sparse motion
regularization. The final CodingFlow is generated by applying
median filters to all vertices, where each vertex is assigned
with one motion vector (Fig. 7(d)).

CodingFlow describes the camera motion between adjacent
frames. It is important to note that all motions of CodingFlow
come from the video coding. The estimation process of
CodingFlow includes a global homography estimation, some
motion assignments, and median filtering, all of them are
very efficient. No computationally expensive operations are
involved, such as feature detection and matching [41], dense
optical flow [6], or “as-similar-as-possible” mesh warping [5].

V. VIDEO STABILIZATION

In this section, we describe how to stabilize a video after
CodingFlow is obtained for each frame. For the sake of

completeness, we first describe the method of smoothing a
single camera path - similar approaches are also reported in
methods [1], [7]. Then, we describe how to smooth multiple
paths for the spatially-variant motion compensation.

A. Stabilizing Global Camera Path

In the previous section, a homography F(t) between two
adjacent frames has been estimated for the global motion
correction. In fact, F(t) encodes the global camera motion
of neighboring frames. It is estimated by image features in
traditional 2D stabilization approaches [1], [5], [7]. Here, it is
obtained by manipulating motion vectors obtained from the
video coding. The camera path at the t-th frame is defined as
a concatenation of all these neighboring homographies:

C(t) = F(0)F(1) · · · F(t − 1), F(0) = I. (3)

Given the original camera path {C(t)}, the stabilized
path {P(t)} is obtained by minimizing the energy as follows:

O({P(t)}) =
∑

t

‖P(t) − C(t)‖2

+
∑

t

(λt

∑

r∈�t

ωt,r‖P(t) − P(r)‖2), (4)

where �t denotes a temporal smoothing radius, wt,r is a
Gaussian weight that is set to ex p

(− ‖r − t‖2/(�t/3)2
)
, and

λt balances two terms.
The first term enforces the stabilized video staying close

to the original camera path so as to avoid some artifacts,
such as excessive cropping and wobbling. The second term
encourages the smoothness of the path. The stabilized frames
are generated by warping the input video frames using a
transform B(t), defined as B(t) = C−1(t)P(t) [5].

The weighting coefficient λt for each frame plays an
important role for artifact suppression. If λt = 0 for all t ,
the optimized path is equal to the original path. As a result,
the output video is equal to the input video, leading to no
crops and no wobbles. The method of [5] adopts an iterative
refinement approach to search for the optimal values of λt

for every frame. Initially, all λt ’s are set to 1 and Eq. (4)
is minimized. Then, the cropping of each frame is evaluated.
If some frames do not satisfy the pre-requirement, i.e., empty
region no more than 20% of a frame, the corresponding λt is
reduced by a step, e.g., 0.1, and the optimization is re-run for
another time. The process terminates until all frames satisfy
the pre-requirement.

The drawback of employing a global camera path is that
it can not handle spatially-variant motions, which is a much
desired property for high-quality stabilization, especially
for scenes with depth variations. An improved solution is
presented below.

B. Stabilizing CodingFlow

Figure 8 shows an example of CodingFlows at several video
frames. A pixel profile is produced by collecting motions at
the same pixel location over time [6]. Here, we generate pixel
profiles at mesh vertex locations. Fig. 8 shows four profiles at
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Fig. 7. The pipeline of CodingFlow estimation. A regular grid mesh is placed onto the frame. A motion vector of a block (a) is assigned to the nearby mesh
vertices (b). As a result, a mesh vertex will receive multiple motion vectors coming from its nearby blocks. (c) For each vertex, all collected motions are sent
to a median filter. The filtered result is assigned back to the vertex. (d) Repeating the same procedure for all vertices yields the final CodingFlow.

Fig. 8. CodingFlow and pixel profiles extracted at mesh vertex positions.

four image corner. Profiles of the inner vertices are not shown
in the example. Camera paths are defined for each profile as:

ci (t) = fi (t) + fi (t − 1) . . . + fi (0), fi (0) = 0 (5)

where fi (t) is the motion of i -th vertex at the t-th frame. The
camera path ci (t) is the concatenated additions of all adjacent
motions. The path at i -th profile {ci (t)} is optimized as:

O({pi (t)}) =
∑

t

‖pi(t) − ci (t)‖2

+
∑

t

(λt

∑

r∈�t

ωt,r‖pi (t) − pi (r)‖2) (6)

where {pi(t)} is the optimized profile of vertex position i .
Optimizing profiles over all vertices

∑
i O({pi(t)}) yields the

optimized CodingFlows. The updating motion vector bi (t) for
each vertex is calculated as: bi (t) = pi (t) − ci (t), applying
which to all vertices yields new meshes at each frame. The
stabilized video can be obtained by image warping guided by
mesh grids.

Here, all profiles are optimized independently. Therefore,
they can be processed in parallel for an improved efficiency.
In the bundled paths approach [5], the local camera paths
are optimized with a spatial temporal optimization, where
similarity constraints between neighboring local paths are
enforced. It is easy to understand that if the estimated flow
is smooth spatially, the neighboring local profiles are quite
similar. As such, it becomes unnecessary to enforce additional
spatial similarities. More discussions will be given in the next
section.

All profiles share the same λt for each frame. Similarly,
the iterative refinement approach is adopted. Previously, the
homography-based camera path is used for the evaluation
of image crops. Here, four pixel profiles at four corners
are used for evaluations. Specifically, after the optimization
of Eq. (6), we take the profiles at four corners and calculate

their updating vectors bi (t). At each frame, a new rectangle is
formed after the transformation of four corners, which allows
us to approximate the crops. If the crops are not satisfied, the
corresponding λt is relaxed.

VI. DISCUSSIONS

A. Interference of Intermediate I-Frames

The first frame is an I-frame and will always be encoded
with the intra mode. However, other intermediate I-frames
would cause some troubles because each I-frame is isolated
from its previous frames so that no motion vectors can be
extracted from the coded bitstream. In this case, we go back
to employ the traditional method, i.e., to detect image features
between an intermediate I-frame and its previous adjacent
frame. Then, its CodingFlow is estimated by motions that are
induced by a global homography.

B. Interference of Intra Mode

In video coding, some blocks of a P or B frame may
choose the intra coding mode, i.e., no motion compensation is
needed, which means that no motion vector is available. The
corresponding blocks are referred to as intra blocks. Because
of these intra blocks, some vertices do not receive any motion
vectors. In this case, the global motion will be assigned. If the
majority of blocks in a frame (e.g., over 50%) are intra blocks,
the CodingFlow estimation would become inaccurate. Then,
this frame will be treated as an intermediate I-frame. From
our experiments, the percentage of intra blocks of one frame
is normally within 10%.

C. Flow Comparisions

We compare our CodingFlow with some existing methods
to validate its effectiveness. We show two examples in the
Fig. 9: the first example is dynamic and the second example
is static. We show the Bundled-paths [5] (Fig. 9(b)), the
SteadyFlow [6] (Fig. 9(c)), the MeshFlow [35] (Fig. 9(d)),
and our CodingFlow (Fig. 9(e)), where the Bundled-paths,
the MeshFlow, and the CodingFlow have been interpolated
into dense motion fields for visual comparisons. We also
show the warping errors in terms of SSD, labeled on the
top-left of each flow. Directly smoothing raw optical flow
can cause distortions, especially at the discontinuous motion
boundaries. The video stabilization methods prefer a spatially-
smooth flow field instead of flow fields with rich motion
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Fig. 9. Comparison of motion fields. (a) are two consecutive frames. (b) the interpolated dense motion field produced by the Bundled-paths [5]. (c) the
SteadyFlow [6]. (d) the interpolated dense motion field by MeshFlow [35]. (e) our interpolated CodingFlow for the visual comparisons. The numbers on the
top-left show the warping errors.

TABLE I

THE PROCESSING SPEED (PER FRAME) OF VARIOUS METHODS

details and motion edges. A detailed discussion regarding the
motion field for stabilization can be found in [6]. As can
be seen, our CodingFlow is quite similar when compared
with other approaches. Similar results have also been obtained
nearly in all our experiments. While our approach produces
motion fields whose spatial variations have been smoothed
to a certain extent, it neither relies on image features nor
builds upon expensive dense optical flows, thus facilitating
the implementation by various levels of portable hardware.

VII. EXPERIMENTS

We run our method on a labtop with an Intel i7 2.5GHz CPU
and 16G RAM. We record the speed of the components in
stabilization. For a frame with resolution 720 ×480 and mesh
resolution 16 × 16, our un-optimized C++ implementation
can process a frame in around 18ms. Specifically, we spend
3ms, 2ms, 2ms, 8ms, and 3ms for the motion manipulation,
global motion correction, coding flow estimation, smoothing,
and frame rendering, respectively.

Table I shows the speed of some other approaches for a
comparison. The bottle neck of the Epipolar and Bundled
approaches is the tracking of image features. The estimation
of a dense optical flow required by SteadyFlow is also very
expensive computationally. On the other hand, MeshFlow and
our approach can achieve a similar speed, which is much
faster. While MeshFlow implements the feature tracking very
efficiently on a PC, many functions/processing involved in
MeshFlow are not easy to be transferred into other plat-
forms (such as embedded ones) to maintain the same quality
and efficiency. On the contrary, video decoding has become
compulsory in nearly all video-related applications. So far,
a lot more efforts have been put on implementing various
functions/processing of video decoding on different platforms,
which can thus be utilized directly in our CodingFlow. Finally,
note that we do not count the run time of video decoding
in Table I as all approaches compared here require the same
decoding if the input video is given in a coded format.

TABLE II

THE AVERAGED NUMBER OF JUMPS DURING MOTION ACCUMULATIONS

We perform various experiments to demonstrate the effec-
tiveness and strength of our method. The video examples
(totally 28 video clips) are collected from public datasets that
are gathered from [5]–[7], [11]. Figure 10 shows the thumb-
nails of these video clips. We conduct two types of experi-
ments to evaluate the intrinsic properties of our CodingFlow,
following which the quality of stabilization is evaluated in
terms of some objective metrics.

A. Number of Motion Accumulations

Our motion manipulation presented earlier requires to accu-
mulate inter motions, including motion additions and subtrac-
tions, such that all motions of blocks in one frame only refer to
its adjacent previous frame. It is worth to note that the number
of accumulations is critical. A large number may introduce
some drifting errors, leading to the inaccuracy. Without any
manipulations, the number is 1. One addition or subtraction
will increase the number by 1. Table II summarizes the
averaged numbers of all blocks in all frames of each example.
As can be seen, the number is quite small, indicating that
the encoder tends to search adjacent neighboring frames for
inter motion prediction, which is a very nice property for our
motion manipulation.

B. Valid Inter Motions

An inter motion is considered as a valid motion as long as it
passes the global motion correction. In other words, if a motion
vector contributes itself to the estimation of the Codingflow, it
is treated as a valid motion, thought it might be discarded by
the median filter. The global motion correction rejects errors
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Fig. 10. Video thumbnails. Please refer to the project page for the videos and stabilized results. http://www.liushuaicheng.org/TIP/CodingFlow/index.html.

TABLE III

THE PERCENTAGE OF VALID INTER MOTION OF THE 28 EXAMPLES

that are totally inconsistent with the camera motion while the
median filters smooth out noises for an improved accuracy.

We summarize the percentage of valid inter motions of the
28 examples in Table III. In each example, we record the
validity of each frame and take the average of all frames for
the final values. The validity varies from 60% to 85%, with
the lowest value 62% at Example 8 and the highest value 85%
at Examples 13 and 21. Note that Example 8 contains a
large portion of stairs - the repetitive structure that confuses
the block-matching algorithm; whereas Examples 13 and 21
are full of differentiable textures that facilitate the block-
matching. In contrast, the lack of rich textures can lead to
a low percentage, such as Examples 22 (ice ground) and
7 (blue sky). In Example 22, apart from poor textures, the
background that moves dramatically further decreases the
motion validity. Note that thumbnails in Fig. 10 may not
retain sufficient information of the video. Please refer to the
project page for these videos with a more thorough impression.

C. Warping Errors

We evaluate the quality of the motion estimation in terms
of warping errors. Here, we warp the frame at t towards the
frame at t − 1 according to the CodingFlow of the t-th frame.
The averaged SSD errors are calculated between two frames.
We skip the frame boundaries to exclude any black regions.
We average all SSD errors from all frames for each example.
Table IV summarizes the averaged SSD errors. We also

TABLE IV

THE AVERAGED WARPING SSD ERRORS OF THE 28 EXAMPLES

BY BUNDLED-PATHS [5], STEADYFLOW [6],
MESHFLOW [35], AND OUR METHOD

compute the warping errors of Bundled-paths [5],
SteadyFlow [6], and MeshFlow [35] for comparisons.
As shown by Table IV, our performance is comparable with
these existing approaches. The performance of SteadyFlow is
slightly better than the others. The Bundled-paths approach
adopts SURF features for the as-similar-as-possible mesh
warps, while SteadyFlow calculates dense optical flow as the
motion sources and MeshFlow tracks image features. Our
CodingFlow is light-weight, neither requires external motion
calculations nor minimizes the least squares for mesh rigidity
regularization, yet produces comparable results in terms of
the registration quality.

D. Objective Evaluations

To evaluate the quality of stabilization, we adopt three
objective metrics: cropping ratio, distortion, and stability,
which are proposed in [5]. For a good result, these metrics
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Fig. 11. Quantitative evaluations of 12 examples using objective metrics.

should be close to 1. For the sake of completeness, we first
describe these metrics briefly in the following.

1) Cropping Ratio: Evaluates the effective area after
cropping away black boundaries. A larger ratio means less
cropping. It is estimated by finding a homography between
every input and output frames. The cropping ratio of each
frame is estimated by the scale component of the homography.
The smallest ratio is adopted as the final cropping ratio.

2) Distortion Score: Evaluates the wobble distortion of sta-
bilized frames. Similarly, a homography is estimated between
the input and output frames. Then, the distortion score is
estimated from the anisotropic scaling of the homography.
In particular, it is computed by the ratio of the two largest
eigenvalues of the affine part from the homography. Similarly,
the worst score is adopted as the distortion score.

3) Stability Score: Evaluates the smoothness of the sta-
bilized video. The vertex profiles are extracted from the
stabilized video for the evaluation. Specifically, we analyze
each vertex profile in the frequency domain. We take a few of
the lowest frequencies (2nd to 6th) and calculate the energy
percentage over full frequencies (without DC component). The
final score is obtained by averaging from all profiles.

We choose 12 out of all 28 examples (Fig. 10) and compare
our method with the methods of [3], [5], [6], and [11]. The
results of other approaches are either collected from their
project pages or produced by ourselves. For videos that do
not provide the results, we leave them blank. As illustrated
by Fig. 11, our method can produce comparable, sometimes
superior, results when compared with these state-of-the-art sta-
bilization methods. Most importantly, except for our method,

Fig. 12. Some failure cases. (Lack of the valid inter motions).

all other methods relay on image features for motion estima-
tion. On the other hand, our method has effectively utilized the
involved video coding that automatically provides necessary
motion vectors. Therefore, it has avoided the time-consuming
process for feature detecting, matching, and tracking nearly
completely for all frames (except intermediate I-frames and
some bad P or B frames).

E. Failure Cases

When the number of inter motions corresponding to the
camera motion is insufficient, our system may fail. In general,
the inter motion validity percentage needs to stay above 50%
for a successful stabilization. Though a very low validity
happens rarely, it does exist in some extreme cases, such as
filming a purely white wall or shaking dramatically. Fig. 12
shows three failure cases. The first one was captured in a
corridor with three white walls. The second one was shot
at a flying drone with textureless backgrounds. The third
one contains periods with sudden dramatic shakes. All these
examples yield poor inter motions, stabilizing which would
lead to wobble distortions (the first two cases) and unstable
motions (the third case).
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VIII. CONCLUSION

We have presented a video stabilization approach that
utilizes the involved video coding for the recovery of cam-
era motions. In our method, block-based motion vectors are
extracted directly from the coded video bitstream, and then
manipulated to refer only to its previous adjacent frames.
A novel CodingFlow is estimated from the manipulated motion
vectors such that a sparse motion field is obtained to describe
spatially-variant motions for a high-quality video stabilization.
Numerious experiments as well as quantitative evaluations are
conducted, which shows the effectiveness of our proposed
method with comparisons to several state-of-the-art methods.

REFERENCES

[1] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum, “Full-frame
video stabilization with motion inpainting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, no. 7, pp. 1150–1163, Jul. 2006.

[2] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving warps
for 3D video stabilization,” ACM Trans. Graph., vol. 28, no. 3, 2009,
Art. no. 44.

[3] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala, “Subspace video
stabilization,” ACM Trans. Graph., vol. 30, no. 4, 2011, Art. no. 4.

[4] B.-Y. Chen, K.-Y. Lee, W.-T. Huan, and J.-S. Lin, “Capturing intention-
based full-frame video stabilization,” Comput. Graph. Forum, vol. 27,
no. 7, pp. 1805–1814, Oct. 2008.

[5] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera paths for video
stabilization,” ACM Trans. Graph., vol. 32, no. 4, 2013, Art. no. 78.

[6] S. Liu, L. Yuan, P. Tan, and J. Sun, “Steadyflow: Spatially smooth optical
flow for video stabilization,” in Proc. CVPR, 2014, pp. 4209–4216.

[7] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed video stabi-
lization with robust L1 optimal camera paths,” in Proc. CVPR, 2011,
pp. 225–232.

[8] M. Grundmann, V. Kwatra, D. Castro, and I. Essa, “Calibration-free
rolling shutter removal,” in Proc. ICCP, 2012, pp. 1–8.

[9] Z. Zhou, H. Jin, and Y. Ma, “Plane-based content-preserving warps for
video stabilization,” in Proc. CVPR, 2013, pp. 2299–2306.

[10] J. Shi and C. Tomasi, “Good features to track,” in Proc. CVPR, 1994,
pp. 593–600.

[11] A. Goldstein and R. Fattal, “Video stabilization using epipolar
geometry,” ACM Trans. Graph., vol. 32, no. 5, 2012, Art. no. 126.

[12] S. Bell, A. Troccoli, and K. Pulli, “A non-linear filter for gyroscope-
based video stabilization,” in Proc. ECCV, 2014, pp. 294–308.

[13] A. Karpenko, D. E. Jacobs, J. Baek, and M. Levoy, “Digital video
stabilization and rolling shutter correction using gyroscopes,” Stanford
Comput. Sci., Stanford, CA, USA, Tech. Rep. CSTR 2011-03, 2011.

[14] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[15] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[16] M. L. Gleicher and F. Liu, “Re-cinematography: Improving the camera
dynamics of casual video,” in Proc. ACM Multimedia, 2007,
pp. 27–36.

[17] Y.-S. Wang, F. Liu, P.-S. Hsu, and T.-Y. Lee, “Spatially and temporally
optimized video stabilization,” IEEE Trans. Vis. Comput. Graphics,
vol. 19, no. 8, pp. 1354–1361, Aug. 2013.

[18] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vol. C-23, no. 1, pp. 90–93, Jan. 1974.

[19] B. Zeng and J. J. Fu, “Directional discrete cosine transforms—A new
framework for image coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 3, pp. 305–313, Mar. 2008.

[20] SY. Zhu, S.-K. A. Yeung, and B. Zeng, “R-D performance upper bound
of transform coding for 2-D directional sources,” IEEE Signal Process.
Lett., vol. 16, no. 10, pp. 861–864, Oct. 2009.

[21] S. Y. Zhu, S.-K. A. Yeung, and B. Zeng, “In search of ‘better-than-
DCT’ unitary transforms for encoding of residual signals,” IEEE Signal
Process. Lett., vol. 17, no. 11, pp. 961–964, Nov. 2010.

[22] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo, “Efficient
integer DCT architectures for HEVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 24, no. 1, pp. 168–178, Jan. 2014.

[23] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,
Nov. 1998.

[24] Y. Taki, M. Hatori, and S. Tanaka, “Interframe coding that fol-
lows the motion,” in Proc. Inst. Electron. Commun. Eng. Jpn. Annu.
Conv. (IECEJ), 1974, p. 1263.

[25] J. Jain and A. Jain, “Displacement measurement and its application
in interframe image coding,” IEEE Trans. Commun., vol. 29, no. 12,
pp. 1799–1808, Dec. 1981.

[26] T. Koga, K. Linuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-
compensated interframe coding for video conferencing,” in Proc. NTC,
1981, pp. C9.6.1–C9.6.5.

[27] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, no. 4, pp. 438–442, Aug. 1994.

[28] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 3, pp. 313–317, Jun. 1996.

[29] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no. 2,
pp. 287–290, Feb. 2000.

[30] S. Liu, Y. Wang, L. Yuan, J. Bu, P. Tan, and J. Sun, “Video stabilization
with a depth camera,” in Proc. CVPR, 2012, pp. 89–95.

[31] B. M. Smith, L. Zhang, H. Jin, and A. Agarwala, “Light field video
stabilization,” in Proc. ICCV, 2009, pp. 341–348.

[32] Z.-Q. Wang, L. Zhang, and H. Huang, “Multiplane video stabilization,”
Comput. Graph. Forum, vol. 32, no. 7, pp. 265–273, Sep. 2013.

[33] C. Jia and B. L. Evans, “Constrained 3D rotation smoothing via
global manifold regression for video stabilization,” IEEE Trans. Signal
Process., vol. 62, no. 13, pp. 3293–3304, Jul. 2014.

[34] J. Bai, A. Agarwala, M. Agrawala, and R. Ramamoorthi, “User-assisted
video stabilization,” Comput. Graph. Forum, vol. 33, no. 4, pp. 61–70,
2014.

[35] S. Liu, P. Tan, L. Yuan, J. Sun, and B. Zeng, “Meshflow: Minimum
latency online video stabilization,” in Proc. ECCV, 2016, pp. 800–815.

[36] N. Jiang, P. Tan, and L.-F. Cheong, “Multi-view repetitive structure
detection,” in Proc. ICCV, 2011, pp. 535–542.

[37] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in Proc. ICCV, 2009, pp. 349–356.

[38] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “PatchMatch:
A randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph., vol. 28, no. 3, p. 24, 2009.

[39] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. New York, NY, USA: Cambridge Univ. Press, 2003.

[40] D. Sun, S. Roth, and M. Black, “Secrets of optical flow estimation and
their principles,” in Proc. CVPR, 2010, pp. 2392–2399.

[41] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

Shuaicheng Liu (M’15) received the B.E. degree
from Sichuan University, Chengdu, China, in 2008,
and the M.S. and Ph.D. degrees from the National
University of Singapore, Singapore, in 2010 and
2014, respectively. In 2014, he joined the University
of Electronic Science and Technology of China
and is currently an Associate Professor with the
Institute of Image Processing, School of Electronic
Engineering. His current research interests include
computer vision and computer graphics.

Mingyu Li received the B.Eng. degree from
Zhengzhou University, Zhengzhou, China, in 2013.
He is currently pursuing the master’s degree with the
Institute of Image Processing, School of Electronic
Engineering, University of Electronic Science and
Technology of China. His current research inter-
ests include image/video compression and image
processing.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 30,2020 at 02:05:50 UTC from IEEE Xplore.  Restrictions apply. 



3302 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

Shuyuan Zhu received the Ph.D. degree from The
Hong Kong University of Science and Technol-
ogy (HKUST), Hong Kong, in 2010. From 2010
to 2012, he was with HKUST and Hong Kong
Applied Science and Technology Research Institute
Company Ltd., respectively. In 2013, he joined the
University of Electronic Science and Technology of
China and is currently an Associate Professor with
the School of Electronic Engineering. His research
interests include image/video compression, image
processing, and compressive sensing. He is a mem-

ber of the IEEE CAS Society. He has over 40 research publications and
received the Top 10% Paper Award at the IEEE ICIP 2014. He was the special
Session Chair of image super-resolution at the IEEE DSP 2015. He served as
the Committee Member of the IEEE ICME 2014, and serves as the Committee
Member of the IEEE VCIP 2016.

Bing Zeng (M’91–SM’13–F’16) received the
B.Eng. and M.Eng. degrees in electronic engineering
from the University of Electronic Science and
Technology of China (UESTC), Chengdu, China, in
1983 and 1986, respectively, and the Ph.D. degree in
electrical engineering from the Tampere University
of Technology, Tampere, Finland, in 1991.

He was a Post-Doctoral Fellow with the University
of Toronto from 1991 to 1992 and as a Researcher
with Concordia University from 1992 to 1993.
He then joined The Hong Kong University of

Science and Technology (HKUST). After 20 years of service at HKUST,
he returned to UESTC in 2013, through China’s 1000-Talent-Scheme.
At UESTC, he leads the Institute of Image Processing to focus on image
and video processing, 3D and multi-view video technology, and visual big
data. During his tenure at HKUST and UESTC, he has graduated over
30 master and Ph.D. students, received about 20 research grants, filed eight
international patents, and authored or co-authored over 250 papers.

Three representing works are as follows: one paper on fast block motion
estimation, published in the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY (TCSVT) in 1994, has so far been
SCI-cited over 1000 times (Google-cited over 2100 times) and currently
stands at the seventh position among all papers published in this Transactions;
one paper on smart padding for arbitrarily-shaped image blocks, published
in the IEEE TCSVT in 2001, leads to a patent that has been successfully
licensed to companies; and one paper on directional discrete cosine
transform, published in IEEE TCSVT in 2008, receives the 2011 IEEE
CSVT Transactions Best Paper Award. He also received the best paper award
at China-Com three times (2009 Xi’an, 2010 Beijing, and 2012 Kunming).

He served as an Associate Editor of the IEEE TCSVT for eight years and
received the Best Associate Editor Award in 2011. He was General Co-Chair
of the IEEE VCIP-2016, Chengdu, in 2016. He is currently on the Editorial
Board of the Journal of Visual Communication and Image Representation
and serves as General Co-Chair of PCM-2017. He received the Second
Class Natural Science Award (the first recipient) from the Chinese Ministry
of Education in 2014 and was elected as an IEEE Fellow in 2016 for
contributions to image and video coding.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 30,2020 at 02:05:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


