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Abstract—This paper presents a method to stabilize shaky
stereoscopic videos captured by hand-held stereo cameras. It is
often problematic to apply a traditional monocular video stabiliza-
tion techniques directly to the stereoscopic views independently.
This is mainly because some undesirable vertical disparities and
inaccurate horizontal disparities are produced, which violates the
original stereoscopic disparity constraint, leading to erroneous
depth perceptions. In this paper, we show that the MeshFlow stabi-
lization method for monocular videos can be extended for stereo-
scopic videos by taking additional disparity constraints during the
stabilization. In particular, we first estimate disparities between
two views. Then, we compute camera motions by the MeshFlow
motion model, in which the camera paths can be extracted from
the meshes at each view. Next, we smooth these paths of two views
separately. After path optimization, we adjust the meshes of one
view by our proposed joint the disparity and stability mesh warp,
so that the temporal stability and the correct depth perception
can be achieved simultaneously. We evaluate our method on vari-
ous challenging stereoscopic videos with different camera motions
and scene types. In the experiment, we adapt the objective quality
assessment of single videos to evaluate our stereoscopic video sta-
bilization. We further propose an objective evaluation method to
assess the quality of the disparities in terms of the spatial and tem-
poral coherence after the stabilization. The experimental results
demonstrate the effectiveness of our method both quantitatively
and qualitatively.

Index Terms—Stereoscopic, video stabilization, MeshFlow,
disparity.

I. INTRODUCTION

S TEREOSCOPIC 3D is becoming increasingly popular
these years, as it can enhance the experiencing of depth

by feeding different views to different eyes. With the popularity
of stereoscopic devices, the demand of processing stereoscopic
contents raises quickly, including stereoscopic cloning [1]–[3],
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Fig. 1. Artifacts in stereoscopic image warping: (a) original stereoscopic im-
age, (b) vertical disparities introduced by warping each view separately, and (c)
results with the correct warping.

warping [4], [5], inpainting [6], [7], panorama stitching [8], [9],
and retargeting [10], [11]. These techniques mainly focus on the
stereoscopic image processing where good performances have
been achieved for various applications, while a few works have
considered the stereoscopic video processing. In this work, we
focus on a basic yet very important video processing task, the
stereoscopic video stabilization.

Videos (monocular or stereoscopic) captured by hand-held
cameras often appear shaky and undirected. Digital video sta-
bilization techniques improve the video quality by removing
camera jitters, synthesizing videos with smoothed camera mo-
tions. Compared with monocular videos, the stabilization of
stereoscopic videos is more challenging, because the shakiness
in stereoscopic videos not only yields annoying jittery motions
but also causes visual discomforts and dizziness [12].

The primary challenge in the stereoscopic video stabiliza-
tion is to maintain a good disparity consistency. If we apply
classic monocular video stabilization methods directly to each
view of a stereoscopic video separately, the inherent disparities
would be damaged, which yields the problematic depth percep-
tion, leading to 3D fatigue. Here, artifacts are mainly caused
by two reasons. First, as proved in [5], applying the existing
monocular image warping techniques directly to stereoscopic
images would introduce vertical disparities (fake disparities).
Fig. 1 shows such an example. If we warp the left and right
views of a stereoscopic image (Fig. 1(a)) independently, verti-
cal disparities will be introduced (Fig. 1(b)). Compared to that,
Fig. 1(c) shows the warping result with correct disparities. Sec-
ond, maintaining the temporal consistency is another challenge.
If we stabilize each view inappropriately or put problematic
disparity constraints during the stabilization, the temporal con-
straints could not be maintained. In the highlighted region of
Fig. 2, the disparities of the status vary smoothly along the time
in the original video (Fig. 2(a)). If two views were processed
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Fig. 2. Temporal artifacts caused by stabilizing each view separately: com-
pared to the original stereoscopic video (a), the temporal coherence of disparities
is damaged, as shown in (b), because of applying the monocular video stabi-
lization method directly to each video, whereas (c) shows our result.

independently, as shown in Fig. 2(b), the disparities of the same
region vary significantly between adjacent frames, which creates
a hallucination as if the statue is moving forward and backward.
Fig. 2(c) shows that our method is able to handle this problem
by addressing the temporal coherence of disparities.

With regards to the spatial artifacts, Liu et al. [5] developed
a technique to extend some existing image warping algorithms
to stereoscopic images. In particular, they synthesize a target
disparity map according to some user-specified warps. In this
way, the original disparity distribution can be well kept to avoid
introducing fake disparities. With regards to the temporal arti-
facts, Liu et al. [13] proposed a subspace approach to maintain
the temporal consistency. They show that the feature trajecto-
ries from the left and right views of a stereoscopic video share
a common subspace. As such, the stabilized stereoscopic video
can be obtained by smoothing the common eigen-trajectories.
However, this method requires long feature trajectories for the
matrix factorization, which are hard to obtain (particularly when
videos contain large camera shakes or quick camera rotations).

Compared with the subspace method [13], some parametric-
based approaches [14]–[17] can estimate camera motion by
extracting feature correspondences between neighboring con-
secutive frames, which releases the requirement of long feature
tracks. Therefore, these methods are robust to various challeng-
ing camera motions. However, these approaches still require the
estimation of some parametric motion models, e.g., affines [14]
or homographies [17], which are also hard to implement on
embedded platforms, such as FPGA.

Recently, Liu et al. [16] proposed a MeshFlow motion
model, which is a non-parametric model that can represent
motions caused by non-trival depth variations. Different from

parametric approaches that require either IRLS [18] or
RANSAC [19] for the robust model fitting, MeshFlow relieves
the complexity by calculating the sparse motions directly at
grid mesh vertexes with median filters for the outlier rejec-
tion. In this way, MeshFlow can be estimated very efficiently
under various platforms with the capability of representing ac-
curately the spatially-variant motions for the high-quality video
stabilization.

In this paper, we propose a robust stereoscopic video stabiliza-
tion algorithm that removes the temporal jitters and preserves
the disparities at the same time. We adopt MeshFlow for the
motion estimation and upgrade it by adding the disparity reg-
ularization for stereoscopic videos. In particular, we begin by
calculating the disparity map between two views using dense
point correspondences. Then, we estimate the MeshFlow mo-
tion models within each view, from which the camera paths can
be extracted. Next, we smooth the paths of two views separately.
According to the smooth transform, we calculated the desired
disparity based on the disparity preserving warp (DPW) [5].
After that, we adjust the meshes of one view by the proposed
joint disparity and stability mesh warp (JDSW), which help to
maintain the disparities and stabilities simultaneously. Guided
by the target meshes of each view, we render the stabilized
stereoscopic videos.

The main contribution of this paper can be summaried into
the following three aspects,

1) We first introduce Meshflow into stereoscopic video sta-
bilization problem, which enables our approach share
higher efficiency and robustness over existing methods.
In addition, the mesh-based motion representation helps
us handle scenes with large parallax and non-trivial depth
variations.

2) We propose a novel warping method named JDSW which
considers disparity and stability jointly in the mesh warp-
ing. By conducting JDSW, we overcome the main chal-
lenge in stereoscopic video stabilization, that is, keeping
the spatial and temporal coherence of the disparity.

3) We design an objective metric to evaluate the quality of
the disparities after stabilization quantitatively.

The rest of this paper is organized as follows. Sec. II reviews
the related works. Sec. III presents our method in detail. Some
discussions are provided in Sec. IV. Some results are presented
in Sec. V. Finally, Sec. VI concludes the paper.

II. RELATED WORKS

In this section, we present a brief review of the related
works, including the traditional monocular video stabilization,
the stereoscopic disparity manipulation, and the stereoscopic
video stabilization.

A. Video Stabilization.

Existing works on the monocular video stabilization can be
roughly categorized as 2D [14], [15], [17], [20], 2.5D [21]–[23],
and 3D [24]–[28] approaches according to their adopted motion
models.
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The 3D methods reconstruct 3D camera poses as well as 3D
scene points, and smooth these 3D camera trajectories to sta-
bilize the video [24], [29]. If 3D reconstructions are applicable
for the video, the 3D methods often produce the best result as
compared to other approaches. However, 3D reconstruction is
often fragile due to the requirement of long feature tracks that
are hard to obtain in videos containing occlusions, motion blurs,
or quick camera motions. To recover the 3D camera motion ro-
bustly, one usually needs some extra hardware, such as the depth
camera [26] or the light field camera [27]. Instead of applying
the expensive and brittle 3D reconstruction, the 2.5D methods
utilize partial 3D information that is embedded in long feature
tracks for stabilization, such as the epipolar constraint [21] and
the subspace constraint [22]. However, these 2.5D methods still
require a certain length of feature tracks, causing the algorithm
sensitive to the scene contents.

The 2D methods estimate a series of 2D linear transformations
(e.g., affines or homographies) between consecutive frames to
represent the camera motions and smooth these transformations
to stabilize the video [15], [30]. Some priors are incorporated
during the smoothing, such as the polynomial curves [31] and
the cinematographical rules [14]. Compared to the 3D methods,
the 2D motion representation does not encounter the problem
of long feature tracks since it only extracts feature correspon-
dences between adjacent neighboring frames. However, a sin-
gle linear model is usually insufficient to model scenes with
large depth variations [32]. To address this issue, Liu et al. [17]
proposed a mesh-based motion model. By dividing each video
frame into regular cells and computing a homography for each
cell independently, this method achieves the capacity of non-
linear motion representation. Later on, Liu et al. [16] proposed
a MeshFlow motion model, which replaces the mesh homogra-
phies by 2D motion vectors. For the efficiency and robustness,
we use MeshFlow for our motion estimation.

B. Stereoscopic Disparity Manipulation

It is crucial to maintain stereoscopic disparities for the high-
quality stereoscopic image/video editing. Luo et al. [1] pro-
posed a two-step iterative disparity adaptation process to reduce
depth discontinuities and maintain global depth structures for
the stereoscopic image cloning. Lo et al. [2] enabled the stereo-
scopic image copy-and-paste by an end-to-end system, which
is robust to the disparity estimation with certain inaccuracy.
Lang et al. [33] exploited a non-linear and locally adaptive
algorithm for the disparity mapping, which is based on the vi-
sual saliency of scene elements to remap the disparity range.
Lee et al. [11] proposed a layer-based stereoscopic resizing al-
gorithm by using the mesh deformation. Wang et al. [6] devel-
oped a stereoscopic inpainting system that takes stereo images
as input and fills the missing color and depth. Niu et al. [5]
presented a technique to compute an optimal target disparity
map based on some user-specified warps, which is free from the
artifacts such as vertical disparities and 3D fatigues. Du et al. [4]
developed a method to manipulate perspectives in stereoscopic
image pairs. Didyk et al. [34] introduced a perceptual model
of disparity for computer graphics, which defines a metric to

compare a stereo image to an alternative stereo image, yielding
the magnitude of the perceived disparity change. In order to
keep correct perceptive depth, we adopt the method of [5] to
warp disparities.

C. Stereoscopic Video Stabilization

There are a few works focusing on the stereoscopic video
stabilization. Chu et al. [35] developed a mobile application for
stereoscopic stabilization, which relies on extra devices includ-
ing the gyroscope and accelerometer embedded on the smart
phones to obtain the camera pose. However, since the camera
motions of the left and right views are different from each other,
it is unreasonable to estimate the motion of two views from
the same sensor data. Also the gyroscope and accelerometer are
influenced by surrounding temperature and their accumulative
drifts make the motion data less reliable. Smith et al. [27] claims
their light field video stabilization algorithm can be extended for
stereoscopic videos. But their method ignores the disparity con-
sistency between left and right views, which heavily affects the
depth perceptual in stereoscopic videos. Liu et al. [13] proposed
a method that considers the video stabilization and stereoscopic
disparity maintaining jointly in the subspace video stabilization
framework [22]. They show that the feature trajectories from
the left view to the right view share a common subspace. In
other words, the low-rank subspace theory not only stands for
the traditional videos, but also holds for the stereoscopic videos.
However, their work requires long feature tracking. Practically,
long feature tracks are hard to obtain in casual videos due to
quick camera motions. In contrast, our method only requires
feature matches between neighboring frames, and therefore im-
proves the robustness largely. Moreover, we design a novel mesh
warping method JDSW to keep the spatial and temporal coher-
ence of the disparities.

III. OUR METHOD

Figure 3 shows our pipeline. We calculate disparities between
the left and right videos and estimate the MeshFlow-based cam-
era motions between neighboring frames within each video. The
pipeline involves three types of operation: traditional monocular
MeshFlow video stabilization, disparity warp, and JDSW warp.
For the clarification and completeness, we begin by briefly re-
visiting the disparity warp [5] and MeshFlow stabilization [16],
following which we describe the JDSW warp and finish the
pipeline.

A. Disparity

In this section, we present the details regarding the disparity
calculation and warping. Note that, we follow the same idea
with [5] on disparity warping except for using DISflow [36] to
accelerate the disparity estimation. The accuracy of the disparity
plays an important role for the correct depth perception, which
can influence the quality of JDSW in the subsequent step. In the
following, we first present the estimation of the disparity map.
Then, we discuss the details regarding the disparity warp.
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Fig. 3. Our system pipeline. (a) The input stereoscopic video. (b) Estimated disparities sampled for illustration. (c) and (d) are the left and right videos, which
are smoothed by MeshFlow [16] separately. (e) The disparities are warped according to [5]. (f) Without loss of generality, we warp the right meshes using JDSW,
and the left meshes are directly derived from stabilization. (g) shows the final result.

1) Disparity Estimation: Per-pixel dense disparity estima-
tion has been studied for decades [37]. The existing approaches
as well as the challenges have been well documented in [38].
In this work, our disparity comes from two sources. We extract
sparse feature matches between two views [39]. The outliers
are excluded by the homography-based RANSAC [32]. The
sparse features can only cover the areas with rich textures. To
deal with the poorly-textured regions, we further calculate the
dense optical flow. We sample the densely-matched correspon-
dences uniformly (every five pixels) to cover the textureless
regions. For the efficiency, we adopt a recent fast optical flow
method [36]. The correspondences from the sparse features and
the dense flows are treated equally in our system. The former
usually possesses the high precision and improves the accuracy
of the disparity for the regions with rich textures, while the latter
can provides constraints for non-textured regions, which is also
very important for the high-quality disparity warp. As such, we
obtain a set of points with disparity values. For a point in the left
view pl

i and its matched point pr
i in the right view, the disparity

can be obtained as:

di = pl
i − pr

i , (1)

where di donates the i-th disparity.
2) Disparity Warping: The original disparities can be easily

damaged if the image warp is applied separately on two views.
As shown in [5], when applying an image warp, the desired
disparity is linearly correlated with the original disparity in the
local image regions. Therefore, the target disparity map can be
obtained by minimize the following energy:

∑

di

∑

dj ∈N (di )

‖(d̂i − d̂j ) − si(di − dj )‖2

s.t. d̂min = sdmin , (2)

where di and d̂i are the original and the desired warped dispar-
ities of a point i,1 and N(di) denotes the neighboring points
locating around the i-th point. Here, the window size is set
to 30 × 30, si is a scaling factor obtained from a similarity

1We use (̂·) to denote disparities or points in the warped coordinates.

transformation that is fitted from neighboring pixels centered
at i before and after the image warp. In addition, the boundary
condition is set to the point with the smallest disparity. dmin

denotes the minimum magnitude of the input disparity and s
represents the scaling factor around this point. In particular, to
calculate the local scaling factor si , a 3 × 3 window centred at i
is defined. Image pixel locations are extracted within this local
window before and after the image warp. The optimal similarity
transformation is obtained by minimizing the energy:

arg min
Hs

∑

c

‖Hsc − ĉ‖2 (3)

where c and ĉ denote the extracted corresponding points before
and after the warping, respectively. Hs is confined to a similarity
transform and si is extracted from the scaling coefficient of Hs .
For more details, please refer to [5].

Notably, the warping function described in [5] is a user-
specified image warp. In our scenario, the image warp comes
from the MeshFlow video stabilization [16].

B. MeshFlow Video Stabilization

In this part, we first introduce the principle of the MeshFlow
motion model [16] and then discuss the details of how to smooth
the camera motion adaptively.

1) MeshFlow Motion Model: MeshFlow [16] is a regular
sparse motion field with the motion vectors located at the mesh
vertexes. It describes the camera motion between two consecu-
tive video frames. The estimation of MeshFlow contains three
steps:

� Extract sparse features between consecutive frames and
calculate the motion vectors at each point.

� Divide the video frame into regular grid mesh and deter-
mine the motion vector at mesh vertexes according to the
neighboring feature motions.

� Smooth the motion vectors by a spatial median filter to
remove noise.

To start with, we first extract feature correspondences between
neighboring frames. We detect FAST features [40] and find the
corresponding points in the adjacent frame using the KLT track-
ing algorithm [41]. Rather than using a global RANSAC [32]
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Fig. 4. Motion propagation in MeshFlow [16]: we assign the neighboring
feature motion flow to the motion list of a vertex, and then the motion of the
vertex can be obtained after the median filtering.

to remove the outliers, we adopt the sub-region RANSAC,
where the frame is divided into 4 × 4 subimage and a local
homography-based RANSAC is used to refine the feature set in
each subimage. Suppose that (p, p̂) is the corresponding feature
point between two frames, the motion flow of p can be computed
as: Fp = p − p̂.

Notably, the distribution of the features plays an impor-
tant role during the estimation of MeshFlow. Recently, Guo
et al. [42] proposed an approach to stitch multiple individually
captured videos with common contents. They proposed a strat-
egy to extract uniformly-distributed features within and across
views by adopting a local threshold adaptation and a plane-
based verification. We borrow the similar idea for our stereo
video feature extraction.

Now, we describe how to estimate the motion at the mesh
vertexes. We divide the frame into 16 × 16 regular mesh grids.
Each mesh vertex can gather some motion vectors from its
nearby feature motions. We set a circle region for each vertex,
as indicated by the dashed circle shown in Fig. 4. Empirically,
the radius of the circle is set to the width of the mesh grid. For
each vertex, the feature points located inside are pushed into a
motion list, as shown in the right part of Fig. 4. We then use a
median filter to smooth the motion vectors in the list and assign
the result to the vertex as its motion vector.

Notice that the sparse motion field obtained in this way tends
to suffer from some noise, caused by the tracking errors and
dynamic moving objects. To enforce a further regularization, we
apply another 3 × 3 median filter on these vertexes to produce a
spatially-smoothed sparse motion field - the so called MeshFlow.

After calculating MeshFlow for every consecutive video
frames, we can extract the vertex profiles as our camera tra-
jectory [16], [20]. A vertex profile collects motions at a spatial
vertex location along the time. Let us use Fi(t) to denote the
motion vector at the i-th vertex at time t. The camera motion
C along the time can be defined as the accumulation of the
consecutive motions:

Ci(t) = Fi(t) + Fi(t − 1) · · · + Fi(1) + Fi(0), Fi(0) = 0,
(4)

where Ci(t) represents the camera trajectory at the spatial loca-
tion of the i-th vertex. Given the original camera path C = C(t),
we then adopt the adaptive path optimization method to obtain
the smoothed camera path.

2) Adaptive Path Smooth: We first describe our adaptive
smooth strategy for a single camera path, and then extend it
to multiple camera paths.

Given an original camera path C = C(t), we obtain the
smoothed path P = P (t) by minimizing the following energy:

O({P (t)}) =
∑

t

‖P (t) − C(t)‖2

+
∑

t

(
λt

∑

r∈Ω t

ωt,r (C) · ‖P (t) − P (r)‖2

)
,

(5)

where Ωt denotes the temporal neighborhood at frame t.
‖P (t) − C(t)‖2 is the data term that enforces the optimal cam-
era path to be close to the original path to reduce the cropping
and distortion. ‖P (t) − P (r)‖2 is the smoothness term that sta-
bilizes the path. The smooth kernel wt,r is a Gaussian weight
that is set to exp(−‖r − t‖2/(Ωt/3)). λt is a parameter that
balances the smoothness for each frame. It is set to 1 initially
and refined during the iterative minimization of the energy in
Eq. (5) such that the cropping and the stability can be balanced,
and the wobbling distortions can be suppressed. Please refer
to [17] for more discussions.

Eq. (5) minimizes a single camera trajectory. To minimize all
paths for all vertexes, a spatial constraint is imposed [17]:

∑

i

O({Pi(t)}) +
∑

t

∑

j∈N (i)

‖Pi(t) − Pj (t)‖2 , (6)

where N(i) includes eight neighbors of the i-th vertex profile.
The first term comes from the Eq. (5). The second term enforces
the similarities between neighboring paths. Notably, in practice,
when the motion fields are with strong spatial smoothness, it
is of less importance to enforce the neighboring similarities as
Eq. (6) [16], [20]. We have tested the approach of with and
without the similarity term, and the results are visually similar.

Bi(t) = Pi(t) − Ci(t), (7)

After the path optimization, we calculate the stability trans-
form Bi(t) by Eq. (7) to move each vertex i to its stabilized
position. Then guided by the stabilized mesh in each frame, we
render the left view to a smooth output. After that, the result
of the right view will be synthesized by JDSW which will be
presented in Sec. III-C.

C. Joint Disparity and Stability Mesh Warp (JDSW)

The Joint disparity and stability mesh warp (JDSW) is one
of the contributions in this work, where we use disparity con-
straints and stability constraints to guide the mesh warping. In
this way, the temporal stability and the correct depth perception
can be achieved simultaneously. Before stepping into this part,
we would like first introduce some notations.

1) Notations: After video stabilization, we obtain Bl
k (t) and

Br
k (t) at vertex k for both views. Let us omit the index t for

simplicity. The left mesh can be warped using Bl
k as shown

in Fig. 5(a) and (c). However, we cannot warp the right mesh
using Br

k directly, which could damage the disparities between
two views. An original disparity point pair is defined as (xl

i ,
xr

i ), with disparity of di , and shown as red dots in (a) and (b)
of Fig. 5, where di = [di, 0]T . Notably, we always use k, h to
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Fig. 5. Diagram of “JDSW.” The blue dot and the red dot denote disparity
point and motion point, respectively. The left mesh (a) is warped to (c) by
MeshFlow video stabilization. (d) denotes the target right mesh warped from
(a) using “JDSW”

index mesh cells and i, j to index points. We further denote x̂l
i as

the transformed point of xl
i using corresponding Bl

k (x̂l
i = xl

i +
Bl

k ). The disparity point x̂r
i (Fig. 5(d)) can be obtained using

x̂l
i and the corresponding warped disparity d̂i (x̂r

i = x̂l
i + d̂i),

which is estimated in Sec. III-A1-A. We further denote motion
points as yr

i , which are uniformly sampled (every five pixels)
in the right frame (green dot in Fig. 5(b)). The warped motion
point of the right view ŷr

k (Fig. 5(d)) can be obtained by using
Br

k as ŷr
i = yr

i + Br
k .

The green dot ŷr
i indicates the stabilized position to which

the right mesh should move, while the red dot x̂r
i encodes the

correct disparities that should also be satisfied. We seek for a
mesh warp that best satisfies two requirements (dotted mesh in
Fig. 5(d)). Note that there are many disparity points and motion
points, we only show one of them in Fig. 5 for illustration.

2) Disparity Constraints {(xr
i , x̂

r
i )}: The disparity con-

straints are encoded in the point pairs (xr
i , x̂

r
i ), which come

from the initial disparity correspondences (xl
i , x

r
i ), the warped

disparity d̂i , and the warping transform Bl
k , where x̂r

i is calcu-
lated as x̂r

i = xl
i + Bl

k + d̂i . By enforcing disparity constraints,
the right view tend to move to the positions which preserve
desired disparity with the left view.

3) Stability Constraints {(yr
i , ŷr

i )}: Stability constraints aim
to keep the temporal smoothness in the right view. For a point yr

i

in the original frame (Fig. 5(b)), its stabilized point ŷr
i (Fig. 5(d))

can be obtained as: ŷr
i = yr

i + Br
k , where Br

k is the correspond-
ing updating vector from stabilization.

To obtain the warped mesh that takes both stability and
disparity into considerations, we take all disparity constraints
{(xr

i , x̂
r
i )} and stability constraints {(yr

i , ŷr
i )} as the control

points, and assign these two sets with equal weights. Then,
we apply the MeshFlow model estimation (Sec. III-B1) by us-
ing these jointed control point correspondences. The estimation
process can automaticallpy seek a balance between these two
sets and find the optimal mesh warp. More discussions and
some comparisons with the traditional content preserving warp
(CPW) [24], [43] will be given in the Sec. IV-C.

Algorithm 1: Framework of Stereoscopic Video Stabiliza-
tion.
Input:

Stereoscopic video sequence including left views
{L1 , L2 , . . . LN } and right views {R1 , R2 , . . . RN };

Output:
Stabilized stereoscopic video sequence;

1: Extract matched features between consecutive frames
for left and right views separately;

2: for each i ∈ [1, N ] do
3: Extract the DISflow[36] between Li and Ri ,

calculate the original disparity di ;
4: Estimate the camera motions CL

i and CR
i based on

Meshflow[16] for left and right views;
5: end for
6: Smooth the camera path iteratively and obtain

stabilization mesh transform BL
i and BR

i ;
7: for each i ∈ [1, N ] do
8: Calculate the warped disparity d̂i based on BL

i ;
9: Conduct JDSW on the right view and obtain mesh

transform B̂R
i ;

10: Render the left view Li based on BL
i ;

11: Render the right view Ri based on B̂R
i ;

12: end for

After getting optimal meshes from JDSW, we render the right
view using mesh warping. Combined with the synthesized video
of the left view, a stabilized and disparity-consistent stereoscopic
video result is finally obtained. The framework of our algorithm
can then be concluded as follows.

IV. DISCUSSIONS

MeshFlow has been utilized in two places in our system, i.e.,
the video stabilization and the JDSW warp. The former esti-
mates the camera motions between adjacent frames while the
latter warps images with disparity and stability constraints. In
the stabilization, MeshFlow is used as a motion model. In the
JDSW warp, MeshFlow works as the image warping model.
In [44], we have utilized the bundled camera paths [17] for
the motion recovery and adopted the content preserving warp
(CPW) [24] for the image warp (frame rendering), which in-
volves the techniques that are similar to the as-rigid-as-possible
mesh deformation [43]. In the following, we first present how to
conduct JDSW using CPW, and then compare the performances
of CPW and MeshFlow with respect to both the JDSW warp
and motion estimation.

A. CPW for JDSW

Let V denotes the mesh vertices for the input mesh. The mesh
is warped by optimizing the following energy:

E(V̂ ) = λ1Ed(V̂ ) + λ2Es(V̂ ) + λ3Er (V̂ ) (8)
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Fig. 6. Mesh configuration and motion relationship. (a) meshes (left or right)
at t − 1 and t before and after warp. (b) The unknown motions F ξ+1

k
(t) can be

derived as (F ξ
k
(t) + Bξ

k
(t − 1) − Bξ

k
(t)).

where V̂ are the unknown mesh vertices; Ed(V̂ ), Es(V̂ ), and
Er (V̂ ) account for the disparity term, the stability term, and
the rigidity term, respectively, with λ1 , λ2 and λ3 being the
associated weights (λ1 = 5, λ2 = 1, λ3 = 1) [44].

1) Disparity Term: The disparity term comes form the
disparity constraints {(xr

i , x̂
r
i )}. We represent each point

xr
i by its 2D bilinear interpolation of four vertexes Vi =

[v1
i , v2

i , v3
i , v4

i ] of the enclosing grid cell: xr
i = Viwi , where

wi = [w1
i , w2

i , w3
i , w4

i ]T are the interpolation weights that sum
to 1. For the warped vertexes V̂i = [v̂1

i , v̂2
i , v̂3

i , v̂4
i ], we use the

same weights to represent x̂r
k after warping. The disparity term

is defined as:

Ed(V̂ ) =
∑

i

‖V̂iwi − x̂r
i ‖

=
∑

i

‖V̂iwi − (Bl
k + xl

i + d̂i)‖ (9)

2) Stability Term: Similarly, the stability term comes from
the motion constraints {(yr

i , ŷr
i )}. The motion points yr

i are
represented by their corresponding enclosing grid cell as yr

i =
Viwi . The stability term is then defined as:

Es(V̂ ) =
∑

i

‖V̂iwi − ŷr
i ‖

=
∑

i

‖V̂iwi − (Br
k + yr

i )‖ (10)

3) Rigidity Term: It enforces the spatial smoothness during
the mesh deformation. Each grid cell is divided into two trian-
gles. Fig. 7 shows one of the triangles before and after warping.
For each triangle, v1 can be represented by the other two vertices
v2 and v3 in a local coordinate system. Let (u, v) be the normal-
ized local coordinates of v1(Fig. 7(a)). We encourage v̂1 to be
still represented by v̂2 and v̂3 under the same local coordinates
after warping(Fig. 7(b)). Then, the following distance should be
minimized respect to v̂1 , v̂2 , and v̂3 [24], [43]:

‖v̂1 − (v̂2 + u(v̂3 − v̂2) + vR90(v̂3 − v̂2))‖2 , (11)

where u, v are the same values computed before warping, R90 =
[ 0
−1

1
0 ], and Er (V̂ ) consists of all such cost from all triangles

Fig. 7. The rigidity term in CPW. (a) the local coordinate system before
warping. (b) v̂1 should be represented by v̂2 and v̂3 under the same local
coordinates after warping.

collected from every grid cells. Eq. (8) is quadratic and can be
minimized by a sparse linear system.

B. MeshFlow vs. CPW in JDSW

Both MeshFlow and CPW can conduct the JDSW warp. The
former directly moves each mesh vertexes according to their sur-
rounding motion vectors while the latter solves a global energy
to determine the warped vertexes. Here, we design an experi-
ment to compare their performances. We collect 12 examples
as shown in Fig. 8. For each example, we warp the frame by
MeshFlow and CPW separately both with the same mesh res-
olution 16 × 16 and the same warping constraints. Then, we
compute the average difference (measured by pixels) of all ver-
texes warped by these two approaches. Table I shows the results.
It is clear from these results that the differences are marginal.
In the meantime, by observing the resulted video visually, one
can also notice that these differences are negligible. In Table II,
we show the time usage when computing JDSW in each frame
based on CPW and Meshflow. Obviously, Meshflow is more
than 14 times faster than CPW in average, that is also fit in mo-
tion estimation module. Therefore, with negligible differences
between the meshes obtain from these two warping methods,
we prefer to choose Meshflow for efficiency.

C. MeshFlow vs. CPW in Motion Estimation

As the approach in [44] adopts the bundled paths [17] for
the motion estimation, it requires CPW to warp two adjacent
video frames (warp frame t towards frame t − 1). Then, it is
necessary to compare the performances of MeshFlow and CPW
with respect to the motion estimation. Here, we also use 12
examples in Fig. 8. We warp the adjacent frames by these two
approaches. Similarly, the warping constrains and the mesh res-
olution (16 × 16) remains the same for both methods. We record
the average vertexes differences with the same strategy. Table III
summaries the results. Again, we can hardly observe these dif-
ferences visually.

In this way, we compare the performances of MeshFlow and
CPW experimently. We show that they can produce compara-
ble results. Also, as discussed in the next section, MeshFlow
runs 25 times faster compared with CPW. Moreover, it is a
non-parametric motion model that can be easily transplanted to
embedded platforms. Therefore, we replace CPW with Mesh-
Flow, which is more efficient and lightweight.
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Fig. 8. Our results on various challenging videos with different scene types and camera motions. These examples can be found under the project page:
http://www.liushuaicheng.org/tci/stereostb/index.html

V. EXPERIMENTS

We run our method on a PC with Intel i5 2.4 GHz CPU
and 12G RAM. For a stereoscopic video with resolution of
1280 × 720, we extract 400 ∼ 550 FAST features [40] at each
frame. We track them using KLT [41]. We divide each frame
into 16 × 16 mesh grids and estimate the motion using Mesh-
Flow. Our algorithm takes 83.1 milliseconds to process a frame
(12 fps). Specifically, we spend 2.13 ms, 2.01 ms, 1.23 ms to
extract features, to estimate MeshFlow motions, and to smooth
camera trajectories, respectively. With respect to the disparity
manipulation, we take 6.58 ms to calculate disparities by the
DIS optical flow [36] and 42.2 ms to warp disparities of a frame.
Moreover, JDSW and the frame rendering consume 7.45 ms and
22.8 ms. If we replace MeshFlow by CPW in the motion esti-
mation and JDSW, the time consumption were 51.103 ms and
98.54 ms respectively.

Compared with the subspace method [13] and the video stitch-
ing [42], which achieve 4 fps and 1.5 fps at 640 × 480 resolution,
our method achieves a much higher efficiency. We use the 2D
sparse motion flow rather than the parametric homography to
represent the camera motion. Therefore, we can release compu-
tations from the model fitting and the matrix operations, such
as the inverse and multiplications. As the subspace method [13]
computes the mesh vertexes by optimizing trajectories in the
transformed subspace while the video stitching method [42]
optimizes a joint energy function, they are not as efficient as
ours that only involves light-weighted computations, such as
the vector addition/substraction and the median filtering.

The memory usage of our method is flexible with the amount
of extracted features and mesh grid division. Based on the above

TABLE I
AVERAGED DIFFERENCE BETWEEN MESHFLOW AND CPW IN JDSW

TABLE II
EFFICIENCY COMPARISON BETWEEN MESHFLOW AND CPW IN JDSW

TABLE III
AVERAGED DIFFERENCE BETWEEN MESHFLOW AND CPW

IN MOTION ESTIMATION

parameter setting, our algorithm needs up to 530 MB to process
a 1280 × 720 stereoscopic video with 600 frames.

We captured several stereoscopic shaky videos with the res-
olution of 1280 × 720. Fig. 8 shows the thumbnails of these
videos. The first 6 examples are collected from [13] and the rest
are captured by ourselves. We stabilize them using the proposed
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Fig. 9. Quantitative comparasion with the subspace method [13] on publicly
available data.

approach. The 7th and 8th videos contain quick camera rota-
tions; the 9th,10th, and 11th examples contains dynamic moving
objects; the 8th contains large portions of poor textured regions.
The results show that our method can handle these challenging
cases robustly.

A. Quality Evaluation of the Stabilization

To evaluate our method quantitatively and objectively, we
follow the idea of [17]. Specifically, the following two values
can be defined to measure the quality of the stabilization, the
cropping ratio and the stability.

1) Cropping Ratio: After the video stabilization, each frame
is transformed to a new position. We find a maximum rectan-
gle to crop the video frames which ensures each frame do not
contain empty regions. The cropping ratio is the percentage of
the remaining area after cropping over the original area. The
maximum value is one.

2) Stability: We extract feature trajectories of the original
video as well as the stabilized video of each view. For those tra-
jectories whose lengths are longer than 20 frames, we calculate
their Fourier transforms. We set the 2nd to 7th components in
the frequency spectrum as the low frequency portion and the
others are high frequency part. Then, the stability is defined as
the decrease percentage of high-frequency components in the
stabilized video compared to its original shaky video. A higher
stability score implies that the video is more smooth.

3) Comparisons: We compare our method with [13] that
extends the subspace method [22] to stabilize the stereoscopic
videos. The comparison is carried out on 6 videos provided
in [13]. The thumbnails of these videos are shown at the first
6 examples in Fig. 8. Fig. 9 shows the results in terms of the
cropping ratio and the stability. As shown in the figure, our
method achieves a higher stability and keeps a larger visual
contents in most of the cases.

B. Quality Evaluation of the Disparity

In this section, we propose an approach to evaluate the quality
of the disparities in the stabilized video. The evaluation metric
contains two parts: vertical disparity variance and the temporal
and spatial coherence of the horizontal disparity.

1) Vertical Disparity Variance: For a regular stereoscopic
video, the vertical disparity should be zero. After image warping,
problematic disparity maybe introduced as shown in Fig. 1(b).
Therefore, we calculate the average vertical disparities in the

TABLE IV
AVERAGE VERTICAL DISPARITY

Fig. 10. The quality measurement for disparity in the stereoscopic video.

stabilized stereoscopic results. Based on dense feature corre-
spondences between left and right view, we can obtain the dis-
parities of the stabilized stereoscopic videos. Then we record
the average of the vertical disparity along all the video frames
in Table IV. JDSW can effectively remove the vertical disparity
introduced after stabilization and our results are better than [13]
on this metric.

In Fig. 11, we visualize tracks of some sampled feature points.
In original stereoscopic video, feature tracks are shaky and have
high frequency jitters. After video stabilization, we can see the
feature tracks are smooth. At the same time, the dashed lines
shown in Fig. 11 imply that both [13] and our method hardly
introduce vertical disparity in the stabilized stereoscopic video.
In addition, since the thumbnails are in same scale, we prove
that our stabilization algorithm can keep more visual content
compared to [13].

2) Spatial and Temporal Coherence of the Disparity: As
shown in Fig. 10, the input stereoscopic video frames at time t
are denoted as Il and Ir , and the stabilized frame are denoted
as the Îl and Îr . We calculate three dense optical flow fields
between these frames using the approach developed in [36]. The
flow fields between Il and Ir , Îl and Îr , Il and Îl are denoted
as (Lo,Ro), (Lt,Rt), and (Po, Pt), respectively. We extract
the x component from the first two fields as the disparities.
The evaluation metric is derived by comparing these disparities
before and after the stabilization. The third field captures the
warping transformation between the pixels of the original frame
and the stabilized frame, which provides a local scale factor
during the comparison.

In particular, we further extract SIFT matches [39] between
the original frame and the stabilized frame of the left view
(Fig. 10, the red points). For each SIFT match, we set a local
window (typically radius is set to 30) centered at each matched
pair (Fig. 10, Wi and Ŵi). Then, we collect the dense matches
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Fig. 11. Visualization of the feature tracks. (a) original stereoscopic video. (b) Stabilized video obtained from [13]. (c) Stabilized video obtained from our
method. The purple tracks are located in the left view and the green ones are belong to the right view. The thumbnails shown here are in same scale.

TABLE V
SPATIAL COHERENCE

TABLE VI
TEMPORAL COHERENCE

from (Po, Pt) within the window and fit a local homography Hi

from these dense matches. We extract the scale component si

from the similarity transform Hi . Next, we collect all disparities
di and d̂i from (Lo,Ro) and (Lt,Rt) within the local window
Wi and Ŵi . The disparity value at the window centers (the red
points) are denoted as dc and d̂c .

As suggested by [5], the correct disparities are linearly corre-
lated within a local region before and after the warp. Therefore,
we calculate the differences of the disparities with respect to
the center of each window and compare these differences by
allowing a local scale change si :

Mi =

∣∣∣∣∣1 −
∑

j∈Wi
‖dj − dc‖

si ·
∑

j∈Ŵ i
‖d̂j − d̂c‖

∣∣∣∣∣ (12)

We use the average of Mi at all SIFT matches to denote the
disparity measure in the frame t. With respect to the spatial co-
herence, we use the mean value of the whole video. With regards
to the temporal coherence, we adopt the standard deviation of
all frames. Smaller value indicates the higher disparity quality.

In Tables V and VI, we compare the disparity in terms of the
spatial coherence and the temporal coherence between our work
and the subspace stereoscopic video stabilization [13]. Notice
that, as the resulted values are relatively small, we have ampli-
fied them by 103 for a clearer illustration. To demonstrate the
effectiveness of JDSW, we also conduct the evaluation without
JDSW. These comparisons show that our method (with JDSW)is
better than [13] in maintaining the spatial and temporal disparity
coherence.

TABLE VII
USER STUDY

C. User Study

To give a subjective evaluation on the visual quality of differ-
ent methods, we conduct a user study based on our results and
[13]. Specifically, we invited 25 viewers to vote video (1)–(6)
shown in Fig. 8 with respect to the following two aspects: (1)
stability, (2) content preserved. The evaluation result is shown
in Table VII. The number shows the percentage that the viewers
select the videos. The ‘Comparable’ includes the viewers who
consider both of the videos are equally good. In general, our
method is comparable with [13]. [13] obtains more stable re-
sults in video (3) and (4). Because, our 2D-based stabilization
method force the smoothed camera motions not to be far away
from its original camera position to avoid overcropping.

VI. CONCLUSION

We have presented in this paper a method for the stereoscopic
video stabilization, which combines the merits of the Mesh-
Flow video stabilization [16] and the disparity preserving warp
(DPW) [5]. By dividing each video frame into cells and applying
MeshFlow, we can handle scenes with large parallax effectively.
To address the problem of the disparity coherence, we proposed
a novel warping method (i.e., JDSW), which jointly takes dis-
parities and stabilities into considerations during the mesh warp.
We further proposed an objective metric to evaluate the qual-
ity of the disparities of the stabilized videos. The effectiveness
of our method has been demonstrated on various stereoscopic
videos.
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