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Abstract—This paper proposes a novel 3D local descriptor,
which seeks a good balance between the efficiency and the
accuracy. We use the Local Reference Frame (LRF) to estimate
a robust coordinate system to describe the local 3D shape. A
novel Local Height Image (LHI) is defined by projecting the
3D points in the support region onto the tangent plane of the
basis point. The Local Height Image Descriptor (LHID) is then
defined by calculating the averaged projection distances. We
further smooth the LHID to resist various kinds of interferences.
We setup several experiments to assess the performance of our
descriptor by comparison with the state-of-the-art algorithms.
The experimental results demonstrate the effectiveness of the
proposed method, which not only achieves the high accuracy as
well as the robustness, but also possesses low complexity for the
efficiency.

I. INTRODUCTION

The 3D local descriptor is one of the most fundamental

and important research topic, which can be applied to many

computer vision tasks such as point cloud registration [1], [2],

[3], recognition [4], [5] and 3D reconstruction [6]. The 3D

descriptor can be classified into two categories, the global

descriptor and the local descriptor. Local descriptors have

attracted greater attention due to their robustness against clut-

ters and occlusions [7], [8], [9]. Local features are extracted

based on the spatial neighborhood of the basis point. A good

descriptor should be a descriptive representation of local 3D

shapes. The article [9] gave a comprehensive survey of existing

local surface feature used into 3D object recognition methods.

And the article [10] evaluated ten popular local 3D descriptors

from the aspects of the descriptiveness, the compactness, the

robustness and the scalability.

Over the past decades, many works have been proposed

regarding the 3D local descriptors. The Spin Image (SI) [7]

is one of the classic local descriptor, whose support region is

based on cylindrical coordinates established by the normal of

the basis point. The cylinder is divided into several rings with

different radius and heights. The indexes of bins formed the

Spin Image. Frome et al. [8] proposed the 3D shape contexts

(3DSC), which has spherical support region that being divided

into bins by azimuth, elevation and radial dimension. The

3DSC has a good performance against noisy and cluttered data.

These descriptors have a common characteristic that they have

not tackled the uniqueness of the coordinate system. Later,

Tombari et al. [11], [12] deployed a unique local Reference

Frame (LRF) to improve the 3DSC performance which is

named as Unique Shape Context (USC). The unique LRF

was obtained by EigenValue Decomposition (EVD) of the

covariance matrix. In order to disambiguate the sign of the

eigenvectors, they reoriented the eigenvector so that its sign

was coherent with the majority of the vectors. The USC yields

an improved accuracy with less memory consumption [12].

They also proposed Signature of Histograms of orientation

(SHOT) descriptor using LRF [11]. Guo et al. proposed a

novel unique LRF [13]. The LRF used weighted scatter matrix

to improve the robustness against varying mesh resolutions,

occlusions and clutters. There were also some other LRFs

based descriptors [14], [15].

High performance of a 3D descriptor is not only based on

a unique and robust LRF but also a descriptive and exact

3D shape representation. Some descriptors are based on the

histograms. For example, the Spin Image divided the cylinder

to rings according to the radial and elevation coordinates [7].

The 3DSC [8], the SHOT [11] and the USC [12] divided the

sphere into bins by azimuth, elevation, and radius. Guo et
al. [13] rotated point cloud around three coordinate axis by

a series of angles and projected point cloud to corresponding

plane and counted the number of points that fall into the bin,

yielding a descriptor named as RoPS. As for these methods, if

the local point cloud is surface but not volume. There would

be some empty bins if the size of bin is small. However, if

the bin become bigger, the resolution of descriptor would be

lower. With this dilemma, the division of volume is not the

most effective way.

As such, Chua and Jarvis proposed Point Signatures [16].

They projected space curve gotten from intersection of a

sphere with the surface to an approximate tangential plane.

Points were characterized by signed distance from the point

to its projected point and the angle about the normal and the

reference direction. Novatnack et al. [14] mapped and encoded

the local points to 2D domain using exponential map and

extracted features in geodesic polar coordinates. Sometimes

the spatial distribution of 3D points can be expressed by or

embedded to a 2D image. Yang et al. divided the 3D lidar

points into grids on the plane [17]. They defined the grids as

geo-referenced feature image, whose intensity values reflect

the spatial distribution of the 3D lidar points. There are also

some other statistical properties applied to 3D descriptors.

For instance, The PFH [18] and the FPFH [1] accumulated

angles between pairs of points falling into the support region.
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However, they are sensitive to noise. MeshHOG computed

histograms on three planes according to the gradients of the

scalar function [15]. Castellani et al. utilized Multicircular
Hidden Markov Model (MC-HMM) to analyze local geometric

feature [19]. Bronstein et al. proposed the spectral shape

distance according to generic diffusion distance, which used

for nonrigid shape recognition [20]. In this paper, as afore-

mentioned, we calculated the spatial distribution rather than

the histogram, for a more realistic 3D shape representation.

Some of the methods, such as the USC [12], can achieve

a good performance in terms of the accuracy. However,

these methods are time consuming. Both the performance

and the efficiency should be considered when designing the

3D descriptors. This is because more and more algorithms

based on 3D descriptors are applied to real time applications

such as self-driving. To this end, we propose a novel 3D

descriptor Local Height Image Descriptor(LHID), which seeks

a good tread-off between the efficiency and accuracy. With

regards to the accuracy and the robustness, we use the LRF

and collect the averaged projection heights. In terms of the

complexity, only a few efficient calculations are involved,

such as the 3D point projection, average calculation and

EigenValue Decomposition. The experiments demonstrate the

effectiveness of the proposed descriptor.

II. OUR METHOD

Local Reference Frame (LRF) has become a most common

strategy in designing the 3D descriptors. Many famous de-

scriptors have adopted the LRF for their descriptor extraction,

such as the SHOT [11], the USC [12], and the RoPS [13].

Whereas, some traditional methods were based on the division

of the 3D volumes. One issue is that this division often leads

to empty bins when the resolution is high.

Our method belongs to the LRF, we first adopt the method

of SHOT [11] to estimate a robust LRF. Then, we project

the 3D surface points onto the tangent plane and divide the

plane into mesh grids based on the LRF. Then, we record

the average projection distances with respect to each mesh

grid. Finally, the descriptor is generated by these averaged

projection distances. In the following, we describe each step

in detail.

A. Local Reference Frame (LRF) Estimation

We adopt the LRF in our local descriptor. Here, we begin

by giving the definition of the LRF. First, for a given basis

point pb (an interest point), we collect the neighboring points

by a radius Rb. In particular, in the 3D space, the searching

space is a searching 3D sphere with the radius Rb and the

center pb, defined as the support region. With n points in the

support region, the covariance matrix Cn×n is calculated as:

Cn×n(pb) =
1∑

i:di≤Rb

(Rb − di)

∑
i:di≤Rb

(Rb−di)·(pi−pb)(pi−pb)
T

(1)

where di = ‖pi − pb‖. Here, the pb and pi correspond to the

3D coordinates of the basis point and its neighboring points.
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Fig. 1. LHID descriptor: Local Height Image(LHI) is established on LRF.
The search region is a circle on the tangent plane. LHI is generated by the
outer square of the circle. The pixel value of LHI is the averaged projection
distance of the containing 3D points. Please refer to the text for the details.

Second, the matrix Cn×n is decomposed by EVD. The normal

of the basis point is given by the eigenvector corresponding

to the smallest eigenvalue, which is denoted as z axis with

ambiguous signs. We form vectors by connecting all the pi to

pb. The sign is then determined by the sign of the majority

vectors. The x axis corresponds to the maximum eigenvalue,

which is disambiguated by the same way. Finally, the y axis is

the cross product of z and x. Please refer [11] for more details.

The final LRF has three orthogonal vectors nx, ny, nz , with

nz denotes the normal.

B. Local Height Image Generation

The tangent plane is uniquely determined by the basis point

pb and its normal nz . The other two orthogonal components

nx, ny are located within the plane. The points that fall into the

support region are projected onto the plane along the normal

vector. Equation 2 is the projection transformation.

p′i =
[

nT
x

nT
y

]
· pi, (2)

where p′i is the projected 2D point computed by pi. Fig. 1

draws an illustration, in which we show the LRF (nx, ny, nz),

the tangent plane, the projection of the points and the circle

projected from the searching sphere. Then, we define a square

within the tangent plane as the outer bounding box of the

circle. The length of the square is 2Rb. We uniformly divide

the square into mesh grids (Fig. 1, red lines). Next, we want

to assign values to each of the grid. To achieve this, we collect

all the projected points p′i within a grid and calculate the mean

projection distance d̄(i,j). Here, the i, j index the mesh cell.

The projection distance is indicated by the length of the dashed

line in Fig. 1. The d̄(i,j) is defined as:

d̄(i,j) =
1

k

∑
p′

i∈Mesh(i,j)

∣∣nT
z · pi

∣∣, (3)
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where pi and p′i denote the 3D coordinates of a point and its

projected 2D version, respectively. k is the total number of

points within a mesh cell Mesh(i, j).
Now, let us consider the mesh cell as an image pixel, and

the intensity of the pixel is the value of that cell. Then, we

define the mesh as the Local Height Image (LHI). In particular,

we divide the mesh as m×m, thus the resolution of the LHI

image is also m×m.

The value of the pixels is the averaged distance, which is

robust to different sizes under noisy inputs. Meanwhile, the

LHI generation is computationally cheap, only several dot

product and average operations are involved.

C. Local Height Image Smoothing

To further improve the robustness against the leaking points,

noises, and varying mesh resolutions. We smooth the LHI

image with a gaussian filter.

H(u, v) = e
− u2

2σ2
x
− v2

2σ2
y , (4)

where we suppose that p′i obeys the uniform distribution

U(−Rb, Rb) in the nx and ny directions, respectively. So

we set σx = σy = 2Rb√
12

. The smooth not only increases the

robustness, but also improves the performances in dealing with

different point densities.

III. EXPERIMENTS

In this paper we compare our method with several state-

of-the-art 3D descriptors implemented in open source li-

brary Point Cloud Lirbary (PCL) [21] (version 1.8.1), includ-

ing the Spin Image (SI) [7], the FPFH [1], the 3DSC [8],

the USC [12], the SHOT [11] and the RoPS [5]. We use the

common Bologna Dataset [22] to test the performances under

different scenarios, including the noise free, the Gaussian

noise, the varying mesh resolutions and the shot noise [10].

We also analyze the complexity of each descriptor.

The dataset consists of scenes. Each scene consists of

several models. For each point in a scene, we can locate it in

the model. In other words, we can establish the ground-truth

correspondences between a scene and its containing models.

Therefore, the matched correspondence can be compared with

the ground-truth correspondence for the evaluation. Specifi-

cally, as proposed in [22], in each experiment, we randomly

select 1000 key points in a model. For example, if a scene

consists of 3 models, then we established 3000 ground-truth

correspondences between the 3 models and the scene. Now, we

want to find the correspondences by matching the descriptors.

To do so, we extract descriptors of all the key points, 3000 in

the scene, 3000 in the models, and matches them by comparing

the descriptor distances. To find a match, for each scene point,

we find the smallest and the second smallest distances in the

models. Then, we compute the ratio between the two distances.

A smaller ratio means a more reliable correspondence [22].

So a correspondence can only be established if the ratio is

smaller than a threshold. The performance are reported by
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Fig. 2. Gaussian Noise Experiment: Precision-Recall curves.

Recall versus 1-Precision curves (RPC) [23]. As proposed

in [10], the recall is the ratio of the number of correct matches

to the number of corresponding features. The precision is

the ratio of the number of correct matches to the number of

matches. RPC is obtained by increasing the threshold from

0 to 1. For the fairness, we use the same support radius and

experiment environment. All the descriptors are implemented

in C++ based on PCL. We use the same set random points. We

use the randomized kd-tree algorithm in the Fast Library for
Approximate Nearest Neighbors (FLANN) [24] to find two-

nearest features. All parameters are set in units of point cloud

density, sometimes also referred to as mesh resolution (mr).

We run our experiment on a machine with i5-7500 and 8.00GB

memory.

A. Gaussian Noise Experiment

We use Bologna dataset with 6 models (‘Armadillo’, ‘Asian

Dragon’, ‘Thai Statue’, ‘Bunny’, ‘Happy Buddha’, ‘Dragon’)

and 45 scenes taken from the Stanford 3D Scanning Reposito-
ry [11], [12], [13]. In the experiment, we fixed search radius

to 15mr and the other parameters were set to default in PCL.

The parameters of the 3DSC and the USC were set according

to [12]. The dimension of our descriptor was set to 400

(20× 20). The performance of all methods was assessed by

noise free data and Gaussian noise data with standard deviation

of 0.1mr, 0.2 mr and 0.3 mr. Fig. 2 shows the RPC results.

Our method and the USC have similar best performance to

noise free data. As noise increases, the USC keeps the highest

Recall. Our method and the RoPS are also robust to noise,

ranking as second and third, respectively. The robustness of

our descriptor is due to the fact that the pixel of LHI represents

the average height. The FPFH is sensitive to noise due to its

strong dependency on normals and angles.
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Fig. 3. Shot Noise Experiment: Precision-Recall curves.

B. Shot Noise Experiment

We also analyzed the performance on shot noise data [10].

We added shot noise with 2.0% and 5.0% outlier ratio to the

scene. The amplitude was set to 6mr. Fig. 3 shows the results.

It is clear that the USC has the best performance, followed by

Ours, the SI, and the SHOT. The Recall rate of our descriptor

can reach to 0.9 and 0.8 in the case of 2.0% and 5.0% outlier

ratio, respectively. The robustness of our method to shot noise

is due to the Gaussian filtering. The result is consistent with the

conclusion in [10], that the RoPS and the FPFH are sensitive

to shot noise. The USC has a better performance than the

3DSC due to the adoption of the LRF.

C. Cross Resolutions Experiment

We resampled the scene to 1
2 , 1

4 of the original point density.

We set the dimension of our descriptor to be 196 (14× 14)

and search radius to be 25mr. Fig. 4 reports the results. The

experiment shows that the USC and the RoPS are very robust.

Our method is close to their performance. In order to resist to

different resolutions, our method tunes the size of LHI pixel.

The Recall rate can reach to 0.8 and 0.7 in the case of 1
2

decimation and 1
4 decimation, respectively.
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Fig. 4. Cross Resolution Experiment: Precision-Recall curves.

D. Efficiency

We used all model points with different search radiuses to

assess the efficiency of every descriptor. Notably, the input data

was the raw point cloud without any additional information,

such as the normals and the triangulations. Moreover, some

methods may spend a period of fixed time, which is irrelevant

to the descriptor extraction. For example, some methods

require normal estimations such as the SI, the FPFH and the
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Fig. 5. Efficiency Experiment: Time spent versus number of points in the
support region. The slope of the approximate line represents the complexity
of different methods. The smaller slope corresponds to a lower complexity.

3DSC while some other methods even need triangulations,

such as the RoPS. Whereas, the USC and ours do not require

either of these operations from the input data. Here, we refer

this period of time as irrelevant time. As this irrelevant time

is fixed per data for a method, for the fairness, in order to

eliminate the impact of irrelevant time on the evaluation of

complexity, for each data we extracted a large amount of point

features to reduce the proportion of irrelevant time to the whole

process.

We compared the efficiency by varying the number of the

points in the support region. We obtained the efficiency curve

by changing the search radius. Fig. 5 reports the running time

of different methods with respect to different number of points

in the support region.

We can see that the amount of the running time is propor-

tional to the number of points in the support region for all

methods. The slope of the approximated line can reflect the

efficiency of methods. The USC is the slowest, followed by

the 3DSC and the RoPS. In contrast, the SpinImage (SI) is

the most efficient method. Our method ranks at the second.

However, our method is much more accurate than SpinImage

as discussed in the previous sections. Our method keeps a

relatively high efficiency due to its simple yet effective two-

dimension grid division and omitting complex weights calcu-

lation. The experiments indicate that our method can achieve

a good balance regarding the accuracy and the complexity.

IV. CONCLUSION

We have presented a novel 3D local feature descriptor, Local

Height Image Descriptor (LHID), which can achieve a good

performance while maintains the efficiency. The descriptor is

based on LRF and LHI. The experimental results demonstrated

that our method had strong robustness similar to the USC and

the RoPS. With respect to the speed, our descriptor is faster

several times than the most state-of-the-art algorithms. Our

method achieves a good balance of accuracy and complexity,

which is advantageous for the scenarios of mass point cloud

data processing and could facilitate real-time applications.
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