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ABSTRACT

This paper presents a method to stabilize shaky stereoscop-
ic videos captured by hand-held devices. Directly applying
traditional monocular video stabilization techniques to two
views independently is problematic as it often brings unde-
sirable vertical disparities and produces inaccurate horizontal
disparities, which violate original stereoscopic disparity con-
straints, leading to erroneous depth perception. In this paper,
we show that monocular video stabilization methods, such as
the bundled camera paths stabilization, can be extended for
stereoscopic videos by taking additional disparity constraints
during the stabilization. In particular, we first estimate dispar-
ities between two views. Then, we compute camera motions
as meshes of bundled paths for each view. Next, we smooth
paths of two views separately and iteratively. During each it-
eration, we adjust the meshes of one view by our proposed
‘Joint Disparity and Stability mesh Warp (JDSW)’. The final
result is generated after several iterations of paths smoothing
and meshes adjusting, in which temporal stability and correc-
t depth perception are achieved simultaneously. We evaluate
our method by various challenging stereoscopic videos with
different camera motions and scene types. The experiments
demonstrate the effectiveness of our method.

Index Terms— Stereoscopic, video stabilization, bun-
dled paths, disparity, mesh warp

1. INTRODUCTION

In recent years, a variety of stereoscopic cameras and displays
became available. Thanks to the success of 3D movies which
accelerates the development of stereoscopic techniques, some
of which has been explored in the research community, in-
cluding stereoscopic cloning [1, 2, 3], warping [4, 5], in-
painting [6, 7], panorama [8, 9] and retargeting [10, 11]. In
this work, we focus on stereoscopic video stabilization [12].
Videos captured by hand-held cameras often appear remark-
ably shaky. Video stabilization aims to remove camera jitters,
synthesizing videos with smoothed camera motions. Sta-
bilization techniques recover camera trajectories, either in
2D [13, 14] or in 3D [15, 16], to represent the camera mo-
tions, which are then smoothed via low-pass filtering [17, 18].

However, the traditional monocular video stabilization

methods cannot be applied to stereoscopic videos directly.
The disparity constraints between left and right views of a
stereoscopic video will be damaged in the stabilized frames
due to the ignoring of the disparity constraints, which gener-
ates problematic depth perception, leading to 3D fatigue to
the viewers. Liu et al [5] proposes a method for stereoscopic
image warping, which preserves disparities during the image
transformation. Meanwhile, bundled camera path stabiliza-
tion [19] can handle videos with scene parallax under various
challenging camera motions. In this work, we propose a
video stabilization technique that combines the merits of two
approaches to stabilize stereoscopic videos. Specifically, we
begin by calculating disparities between two views. Then we
compute camera motions as meshes [19] and smooth them it-
eratively. During each iteration, the disparities are warped [5]
and the meshes are adjusted by our proposed ‘Joint Disparity
and Stability mesh Warp (JDSW)’. We demonstrate the per-
formance of our approach through many challenging casual
captured videos. Please refer the project page for videos. 1

2. RELATED WORK

Video stabilization can be roughly categorized as 3D [15,
16], 2D [13, 18, 19], and 2.5D [20, 21] methods according to
their adopted motion models. The 2D methods estimate 2D
transformations (e.g., affines or homographies) to represent
the camera motion and smooth them for stable videos. 3D
methods reconstruct 3D camera paths as well as 3D scene
structures and smooth the 3D camera trajectory. The stabi-
lized video is synthesized along the smoothed camera trajec-
tory guided by the 3D scene structures. If 3D reconstructions
are applicable for videos, the 3D methods often produce
superior results compared with other methods. However,
3D reconstruction is fragile, especially for consumer-level
videos. To be more practical, the 2.5D methods relax the
requirement of full 3D reconstruction to some partial 3D con-
straints embedded in long feature tracks, such as epipolar [21]
constraint or subspace constraint [20]. Liu et al. [12] extend-
ed the subspace stabilization to handle stereoscopic videos.
They show that the low-rank subspace constraint for monoc-
ular video also holds for stereoscopic video and design a
smoothing strategy to smooth feature tracks from two views.

1http://www.liushuaicheng.org/ICIP2016/stabilization/index.html



Fig. 1. Our system pipeline. (a) The input stereoscopic video. (b) Estimated disparities sampled for illustration. (c) and (d) are
left and right videos, which are smoothed by bundled paths method [19] separately. (e) The disparities are warped according
to [5]. (f) Without loss of generality, we begin by warp the right meshes using the JDSW. The process of (c,d,e,f) are iterated
until both videos are stabilized enough. During each iteration, one view is warped according to JDSW, the other view is warped
directly by stabilization. (g) shows the final result.

However, they rely on the long feature tracks which are hard
to obtain when camera undergoes quick motions (e.g., fast
panning, quick zooming). In this work, we adopt bundled
camera paths approach [19], which is a 2D method that on-
ly requires feature matches between neighboring frames. It
can achieve stabilization effects similar to the 3D methods
while retains the efficiency and robustness of 2D methods. It
handles scene parallax by dividing frames into several mesh
grids, yielding multiple camera paths. We show that it can be
successfully extended for stereoscopic videos by stabilizing
two views jointly.

Stereoscopic disparity manipulation and maintain is crucial
for high quality stereo image/video editing. Recent advances
on the analysis of stereoscopic images have paved the way for
our research. Image cloning methods [1, 2] copied the stereo
content somewhere else and pasted into a new 3D scene com-
patibly. Lang et al. [22] and Lee et al. [11] exploited a local-
ly adaptive algorithm and a disparity histogram for nonlinear
disparity mapping, respectively. Wang et al. [6] developed
a stereoscopic inpainting system for simultaneous color and
depth recovery. Niu et al. [5] extended 2D image warping
to 3D stereoscopic image warping. Du et al. [4] developed a
method to change the views perspectively for stereo images.
Didyk et al. [23] introduced a perceptual model of dispari-
ty for computer graphics and related applications. For depth
coherence, we adopt method of [5] to warp disparities.

3. STEREOSCOPIC STABILIZATION

Figure 1 shows our pipeline. We calculate disparities between
left and right videos and estimate bundled camera motions
between neighboring frames within each video. The pipeline
involves three types of operation, traditional monocular bun-
dled paths stabilization, disparity warp and JDSW warp. For
the clarification and completeness, we begin by briefly revis-

iting disparity warp [5] and bundled stabilization [19], follow-
ing which we describe JDSW warp and finish the pipeline.

3.1. Disparity

Estimation. Per-pixel dense disparity estimation method-
s are well documented in [24], which is still a challenging
vision problem [25]. We estimate disparities using sparse
features [26]. We exclude outliers by homography-based
RANSAC [27]. We further calculate dense optical flow [28]
as disparity and sample them uniformly (every five pixels) to
cover the textureless regions.

Warp disparities. The disparities are warped by minimizing
the following energy [5]:∑

di

∑
dj∈N(di)

‖(d̂i − d̂j)− si(di − dj)‖2 (1)

where di and d̂i are original and warped disparities of a point
i, respectively 2. N(·) represents the neighboring pixels. The
si is a scaling factor. It is obtained from a similarity trans-
form Hsi that fitted from neighboring pixels (3x3) of i before
and after warping. The boundary condition is set to d̂min =
sdmin, where dmin has the minimum magnitude. Notably,
the warping function described in [5] is a user-specified warp.
In our scenario, the warping comes from stabilization. For
more details, please refer to [5].

3.2. Bundled-paths stabilization

Smooth a single path.
A single homography F (t) is estimated between neigh-

boring frames in the original video. The camera path is de-
fined as consecutive multiplications of these homographies:

2We use (̂·) to represent disparities or points in the warped coordinates.



Fig. 2. The red dot and green dot denote disparity point and
motion point, respectively. (c) the left mesh is warped from
(a) by bundled stabilization. (d) the right mesh is warped from
(b) according to our JDSW warping.

C(t) = F (t)F (t − 1)...F (1)F (0), F (0) = I . Given the o-
riginal path C = {C(t)}, the smoothed path P = {P (t)} is
obtained by minimizing the following energy:

O({P (t)}) =
∑
t

‖P (t)− C(t)‖2 (2)

+
∑
t

(λt
∑
r∈Ωt

ωt,r(C) · ‖P (t)− P (r)‖2)

where Ωt denotes the neighborhood at frame t. The strength
of smoothing is controlled by λt. The smoothing kernel wt,r
is a bilateral smoothing weight. The output video is obtained
by applying a transform B(t) to the input video, which is
defined as B(t) = C−1(t)P (t).

Smooth bundled paths. Each frame is divided into a grid
of 16 × 16 cells and camera paths are estimated for each
cell. The estimation is based on the mesh warping, which
warps the frame t to frame t − 1. All Paths are smoothed
simultaneously by a space-time optimization:∑

k

O ({Pk(t)}) +
∑
t

∑
h∈N(k)

‖Pk(t)− Ph(t)‖2, (3)

where N(k) includes eight neighbors of the grid cell k. This
produces a warping transform Bk(t) for each cell, which
brings the original mesh to its desired position.

3.3. Notations

After bundled paths smoothing, we obtain Blk(t) and Brk(t)
for both views. Let us omit the index t for simplicity. The
left mesh can be warped using Blk as shown in Fig. 2 (a)
and (c). However, we cannot directly warp right mesh us-
ing Brk(t), which will damage the disparities between two

Fig. 3. Mesh configuration and motion relationship. (a)
meshes (left or right) at t − 1 and t before and after
warp. (b) The unknown motions F ξ+1

k (t) can be derived as
(Bξk(t))−1F ξk (t)Bξk(t− 1).

views. An original disparity point pair is defined as (xli,
xri ), with disparity of di, shown as red dots in (a) and (b)
of Fig. 2, where di = [di, 0]T . Notably, We always use k,h
to index mesh cells and i,j to index points. We further de-
note x̂li as transformed point of xli using corresponding Blk
(x̂li = Blk ∗ xli). The disparity point x̂ri (Fig. 2 (d)) can be
obtained using x̂li and corresponding warped disparities d̂i
(x̂ri = x̂li+ d̂i). We further denote motion points as yri , which
are uniformly sampled (skip five pixels) in the right frame
(green dot in Fig. 2 (b)). The warped motion point of right
view ŷrk (Fig. 2 (d)) can be obtained usingBrk as ŷri = Brk∗yri .

The green dot ŷri indicates stabilized position that the right
mesh should move to, while the red dot x̂ri encodes the cor-
rect disparities which should be satisfied. We seek for a
mesh warping that best satisfies two requirements (dotted
mesh in Fig. 2 (d)). Note that there are many disparity points
and motion points, we only show one of each in Fig. 2 for
illustration.

3.4. Joint Disparity and Stability mesh Warp (JDSW)

The joint mesh warp achieves both stability and disparity co-
herence. Let V denotes mesh vertices for the input mesh. We
warp the mesh by optimizing over the following energy:

E(V̂ ) = λ1Ed(V̂ ) + λ2Es(V̂ ) + λ3Er(V̂ ) (4)

where V̂ are the unknown mesh vertices. Ed(V̂ ), Es(V̂ ) and
Er(V̂ ) account for disparity term, stability term and similari-
ty term respectively, with λ1, λ2 and λ3 being the associated
weights. We set λ1 = 5, λ2 = 1, λ3 = 1 in our system.
Disparity term. We can obtain pair of point constraint
(xri , x̂

r
i ) through initial disparity correspondences (xli, x

r
i ),

the warped disparity d̂i and warping transform Blk, where
x̂ri is calculated as x̂ri = Blk ∗ xli + d̂i. We represent each
point xri by its 2D bilinear interpolation of four vertexes
Vi = [v1

i , v
2
i , v

3
i , v

4
i ] of enclosing grid cell: xri = Viwi, where

wi = [w1
i , w

2
i , w

3
i , w

4
i ]
T are the interpolation weights that



Fig. 4. Our results on various challenging videos with different scene types and camera motion.

sum to 1. For the warped vertexes V̂i = [v̂1
i , v̂

2
i , v̂

3
i , v̂

4
i ],

we hope the same weights can be used to represent x̂rk after
warping. The disparity term is defined as:

Ed(V̂ ) =
∑
i

‖V̂iwi −Blk ∗ xli − d̂i‖ (5)

Stability term. Similarly, the motion points yri are represent-
ed by their corresponding enclosing grid cell as yri = Viwi.
The stability term is then defined as:

Es(V̂ ) =
∑
i

‖V̂iwi −Brk ∗ yri ‖ (6)

Rigidity term. It enforces spatial smoothness during mesh
deformation. Each grid cell is divided into two triangles. For
each triangle, v1 can be represented by the other
two vertices v2 and v3 in a local coor-
dinate system. Let (u, v) be the local
coordinates of v1. We encourage the
v̂1 to be still represented by v̂2 andv̂3

under the same local coordinates af-
ter warping. The following distance
should be minimized respect to v̂1, v̂2

and v̂3 [15, 29]:

‖v̂1 − (v̂2 + u(v̂3 − v̂2) + vR90(v̂3 − v̂2))‖2, (7)

where u, v are the same values computed before warping,

R90 =

[
0 1
−1 0

]
. Er(V̂ ) consists of all such cost from

all triangles collected from every grid cells. The Equ. 4 is
quadratic and can be minimized by a sparse linear system.

3.5. Iterations

We obtain warped meshes for two views in previous step, with
left meshes obtained by bundled smoothing and right meshes
generated by JDSW. Now, we need to apply them to the next
iteration as described in Fig. 1 (c,d,e,f). As shown in Fig. 3,
the motions between neighboring frame at iteration ξ + 1 of

cell k can be computed as: F ξ+1
k (t) = Bξk(t)−1F ξk (t)Bξk(t−

1). It is then applied to Equ. 3 for bundled smoothing of next
iteration. We also update the disparity In the implementation,
JDSW is applied to the left and right meshes alternately. (e.g.,
at iteration ξ, JDSW is applied to the right meshes, at ξ + 1
to the left meshes). Empirically, our method converges in 5
iterations.

4. RESULTS

We run our method on an Intel i5 3.1GHZ Quad-Core ma-
chine with 8G RAM. For a stereoscopic video of 640 × 480
resolution, our algorithm can achieve the speed of 1.5fps.
Fig. 4 shows several results produced by our method. Please
refer to the videos in the supplementary file. The video is
best viewed in 3D eye glasses. Some of these videos have
challenging camera motions,(e.g., quick rotation) and scene
types, (e.g., large depth variations, dynamic scenes). Thanks
to the advantages of bundled stabilization, we can stabilize
them successfully. We also show a comparison with subspace
stereoscopic video stabilization method [12]. As we do not
require long feature tracks, we can stabilize videos with fast
camera motions, where the length of the feature tracks drop-
s quickly, which challenges the subspace method. We also
show that our method can maintain more visual contents com-
pared with [12] in supplementary video.

5. CONCLUSION

We have presented a method for stereoscopic video stabiliza-
tion, which combines the merits of bundled paths stabiliza-
tion [19] and disparity preserving warping [5]. We proposed a
novel warping method JDSW which jointly considers dispar-
ities and stabilities in mesh warping during the stabilization.
We validate our method on various casual captured videos.
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