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ABSTRACT
Intrinsic image decomposition is an important technique that
decomposes an image into reflectance and shading compo-
nents. In this paper, we enable intrinsic decomposition for
stereoscopic images. Traditional approaches cannot be di-
rectly applied to decompose stereoscopic images, yielding in-
consistent reflectance and 3D artifacts after recoloring. To
solve this problem, we propose a straight yet effective method
for stereoscopic intrinsic decomposition, which consists of
classical retinex constraint as well as disparity constraint. The
former encodes the shading smoothness prior while the latter
controls the reflectance similarity between two views. To fur-
ther reduce ambiguity, we employ local and non-local texture
cues by using superpixels within and across two views. The
experiments show that our method can effectively decompose
stereoscopic images with high quality and offer a comfortable
3D viewing experience.

Index Terms— Stereoscopic, intrinsic image decomposi-
tion, retinex, disparity

1. INTRODUCTION

With the success of 3D movies, stereoscopic cameras and
displays become more and more popular. In recent years,
various methods have been proposed to target stereoscopic
images/videos processing. To name a few, stereoscopic warp-
ing [1], cloning [2],inpainting [3], panorama [4],retargeting [5],
stabilization [6] are all popular image/video editing research
topics. However, among all these studies, fewer work has
been proposed to address the intrinsic decomposition problem
for stereoscopic images, which is one of the most classical
and important topics in image editing.

Intrinsic image decomposition has decades of history in
vision and graphics communities [7, 8, 9]. It aims at decom-
posing an image I into the reflectance (R) component and the
shading (S) component as follows:

I = R× S, (1)

where “×” denotes the pixel-to-pixel multiplication. Many
existing problems can benefit from such a decomposition
with the presence of these useful confounded information.
For examples, resurfacing and material recognition prefer a

reflectance image without appearance variations caused by
shading [10]; and the shape-from-shading algorithm will be
able to infer the surface geometry more accurately when less
reflectance variation appears in the shading map [11].

Though there continuously are a number of reported
works contributing to this field, e.g., [12, 13, 14], intrinsic
decomposition still remains a challenging problem. It is
highly ill-posed as the number of unknowns (R,S) is twice
as many as the observations (I). Furthermore, these tradi-
tional monocular decompositions cannot be directly applied
to stereoscopic images, due to the resulting inconsistent re-
flectance. By considering several extra constraints within and
across views, our approach can deliver more pleasant results.
Fig. 1 shows the effect of recoloring.

2. RELATED WORK

Intrinsic decomposition is first introduced in [7], which pro-
posed the retinex algorithm to analyze local image deviations
in shading and reflectance. Some refined retinex algorithms
with different assumptions were reported in [14, 15, 16]. To
further reduce the ambiguity, some methods [12, 17] tried
to learn the priors to judge the image derivatives, while oth-
ers [14, 18] proposed additional constraints to reduce the
number of unknowns. Specifically, Weiss et. al. [15] used
multiple images to regularize the system. However, it requires
an accurate image registration, which is challenging in many
scenarios. Kang et. al. [19] proposed a method for stereo-
scopic decomposition. However, their method mainly focuses
on graphics images and is only conducted on synthetic data.
In this paper, we propose a more general approach that can be
applied to stereo pairs captured by consumer-level cameras.
Stereoscopic image/video processing is an important topic,
which has attracted lots of attention in the community. Con-
sistent manipulation on two different views is crucial for
high quality stereo editing. To this end, Wang et. al. [20]
explored an inpainting technique for stereoscopic images,
where both color and depth can be recovered simultaneously.
Image cloning methods [2] copies the content and pastes it
into a new 3D environment under the stereoscopic 3D dis-
parity constraints. Meanwhile, image warping is one of the
most basic manipulates in image editing. For instance, Niu
et. al. [1] extended the conventional 2D image warping to



Fig. 1. An illustration of recoloring on stereoscopic images.

handle 3D stereoscopic images; Lang et. al. [21] exploited a
locally adaptive algorithm for nonlinear disparity mapping;
Du et. al. [22] proposed to change the perspective for stereo
pictures; and Didyk et. al. [23] introduced a perceptual model
of disparity. More recently, stereo image cropping [24] and
authoring [25] have also been explored.

3. OUR METHOD

Take the logarithm at both sides of Eq. (1) gives, I = R+ S.
For simplicity, we reuse I , R, and S to represent their log val-
ues. We decompose stereoscopic image pairs by optimizing
over the following energy with respect to shading S:

argmin
S

E(S) =λrEr(S) + λdEd(S)

+ λlEl(S) + λnlEnl(S) + λaEa(S), (2)

where Er, Enl, Ed, El, and Ea are the retinex term, dispar-
ity term, local term, non-local term and absolute scale term,
respectively, with λs, λr, λl, λnl and λa being the associated
weights. Each of these terms will be elaborated in detail in the
following. Notice that the reflectance R can be obtained by
I−S. Through experiments, we set λs = λr = λl = λnl = 1
and λa = 1000 for all examples in our system.

3.1. Retinex Constraint
According to the retinex theory, large derivatives in im-
age intensity attribute to reflectance changes, while small
derivatives are given to shading variations. Thus, the retinex
term Er(S) is formulated as a weighted sum of shading
and reflectance of neighboring pixels over the whole image
region [18]:

Er(S)=
∑
m

∑
n∈N (m)

[
(Sm − Sn)

2+ωm,n(Rm −Rn)
2
]
, (3)

where m stands for all pixels and N (m) denotes the four ad-
jacent neighbors of m. Substituting Rm by Im − Sm, yields:

Er(S) =
∑
m

∑
n∈N (m)

[
(1 + ωm,n)ΔS2

m,n +ΔI2m,n

−2ωm,nΔIm,nΔSm,n] , (4)

where ΔSm,n = Sm − Sn, ΔIm,n = Im − In, and ωm,n

is a balancing weight that can be calculated in a number of

ways [7, 18]. Here, we evaluate the chromaticity distance
of neighboring pixels. If the chromaticity distance is greater
than a threshold τ 1, we set ωm,n = 0, otherwise it is set to
100. Large reflectance variations are allowed, only when its
chromaticity varies dramatically. The chromaticity distance
is defined as:

D(m,n) = 2×
(
1− 〈m, n〉

‖m‖2 · ‖n‖2

)
(5)

where m and n denote color values of pixels m and n.

3.2. Disparity Constraint

Per-pixel dense disparity estimation methods are well docu-
mented in [26]. In our implementation, we calculate dense
optical flow [27] between two views for disparity correspon-
dances. We drop the inaccurate flow (e.g., occluded pixels) by
checking the pixel color similarity following the flow. Other
estimation methods can also be adopted [28]. We want to en-
courage the corresponding pixels between two views to have
similar reflectance. Given the per-pixel correspondences, we
define the disparity term Ed(S) as:

Ed(S) =
∑
m

(Rl
m −Rr

m′)2, (6)

where Rr and Rl refer to the left and right reflectance2, m
and m′ are matched disparity point pair. By substituting R
with I − S, Eq. (6) can be rewritten as:

Ed(S) =
∑
m

(I lm − Irm′ − Sl
m + Sr

m′)2. (7)

3.3. Local Constraint

Local texture cues have shown their effectiveness to reduce
the ambiguity [18]. We employ superpixels [29] to represent
image regions with similar color and textures. We encour-
age the local similarity within the superpixels on reflectance,
which gives rise to the local term El(S):

El(S) =
∑

P i
l ∈Γl

∑
m,n∈P i

l

(Im − In − Sm + Sn)
2, (8)

1τ is set to 0.0009 in our implementation.
2If no l and r are specified, we represent both.



Fig. 2. An illustration of local constraints

where P i
l represents a superpixel group, Γl denotes the set of

superpixel groups, and m and n are two different pixels from
the same superpixel.

An illustration of superpixels for local constraint is shown
in Fig. 2. We sample several pairs of points (yellow dots high-
lighted in Fig. 2 (b), (c)) in each superpixel (Fig. 2 (d)). The
number of sampled points is determined by the size of a su-
perpixel. Notably, local constraints are applied to two views
separately.

3.4. Non-Local Constraint

Figure 3 shows an example of non-local constraints. We en-
courage superpixels with similar image color to share a sim-
ilar reflectance, which can effectively reduce the ambiguity
of the system. Particularly, for each superpixel, we find the
K nearest neighbors in terms of image color in both views
and sample several pairs of locations inside them as illustrated
in Fig. 3. We can easily spot that there are many similar non-
adjacent patches within and across two views. The non-local
term Enl(S) is then defined as:

Enl(S) =
∑

P i
nl,P

j
nl∈Γnl

∑
m∈P i

nl,n∈P j
nl

(Im−In−Sm+Sn)
2, (9)

where Γnl is the union of all superpixels from both views.
Compared to the local constraints, the difference between
Eq. (9) and Eq. (8) is that pixels m and n are not in the same
superpixel but different superpixels.

3.5. Absolute Scale Constraint

Finally, we add the absolute scale term as follows:

Ea(S) =
∑

m∈Pa

(Sm − 1)2, (10)

where the set Pa denotes two brightest pixels, one for each
view. We constrain the brightest pixels in two views to have a
unit shading, which further regularizes the system.

It is important to point out that all terms in Eq. (2) are
quadratic, yielding a sparse linear system which is minimized
by the Matlab ‘\’ solver.

Fig. 3. An illustration of non-local constraints

#1 #2 #3 #4 #5
without 0.045 0.153 0.045 0.044 0.083
with 0.023 0.054 0.044 0.036 0.042

Table 1. The APD values of examples in Fig. 4 under with/out
disparity constraints

4. EXPERIMENTS

Among all the five terms in Eq. (2), the retinex, local and ab-
solute are quite classical. Here, we would like to validate the
effectiveness of disparity and non-local terms, both visually
and numerically, following which we present our final reuslts
in Fig. 4.

4.1. With and Without Disparity Constraint

To evaluate the effect of the disparity term on reflectance con-
sistency numerically, we define the average pixel distance
(APD) as follows:

APD(Rl
m, Rr

m′) =

∑
m,m′∈Φ

‖Rl
m −Rr

m′‖2
N(Φ)

, (11)

where Φ is the set of all matched pixels in two views and
N(Φ) is the total number of matched pixel pairs. We compare
the color difference of corresponding reflectance numerically
(note that the color is normalized to [0, 1]).

Table 1 lists APD values with and without the disparity
constraints on the examples in Fig. 4. Without the dispar-
ity constraints, the reflectance is inconsistent between two
views, which is indicated by the larger APD values. More-
over, we use the method of [30] to decompose our 5th exam-
ple in Fig. 4. As it is a monocular method, it is applied to
two views separately. The reflectances are shown in Fig. 5,
which is inconsistent between two views. Notably, we adopt
the same parameters for all examples.
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Fig. 4. Our results. More results are provided in the supplementary. Images are captured by a steroscopic camera of ourselves.

Fig. 5. The reflectances produced by method [30] on Fig. 4
#5. The inconsistence is highlighted by the red arrows.

4.2. With and Without Non-Local Constraint

Figure 6 shows a visual comparison of with and without the
non-local constraints. Here, we conduct the experiment on a
single image. The input image (Fig. 6(a)) is segmented by
superpixles (Fig. 6(b)). Notice the color difference in the re-
flectance image (Fig. 6(c)) as highlighted by the red arrow.
Our result (Fig. 6(d)) is more consistent.

5. CONCLUSION

We have presented a method for intrinsically decomposing
stereoscopic images. Our method combines several con-
straints, namely retinex, disparity, local, non-local, and abso-
lute scale constraints, into a unified framework to produce a

Fig. 6. With and without non-local constraints. Image credits:
is licensed under Creative Commons.

consistent reflectance decomposition. Our method has been
validated on various stereoscopic images to produce a better
performance as compared to the conventional approaches that
are developed for monocular images.
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