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ABSTRACT
Shaky cameras often capture videos with motion blurs, es-

pecially when the light is insufficient (e.g., dimly-lit indoor

environment or outdoor in a cloudy day). In this paper, we

present a framework that can restore blurry frames effectively

by synthesizing the details from sharp frames. The unique-

ness of our approach is that we do not require blur kernels,

which are needed previously either for deconvolution or con-

volving with sharp frames before patch matching. We develop

this kernel-free method mainly because accurate kernel esti-

mation is challenging due to noises, depth variations, and dy-

namic objects. Our method compares a blur patch directly a-

gainst sharp candidates, in which the nearest neighbor match-

es can be recovered with sufficient accuracy for the deblur-

ring. Moreover, to restore one blurry frame, instead of search-

ing over a number of nearby sharp frames, we only search

from a synthesized sharp frame that is merged by different re-

gions from different sharp frames via an MRF-based region

selection. Our experiments show that this method achieves

a competitive quality in comparison with the state-of-the-art

approaches with an improved efficiency and robustness.

Index Terms— Video deblurring, blur kernel, patch

match, synthesis, nearest neighbors.

1. INTRODUCTION

Videos captured from hand-held devices often appear shaky,

thus rendering videos with jittery motions and blurry con-

tents. Video stabilization [1] can smooth the jittery camera

motions, but leaves the video blurs untouched. Motion blurs

tend to happen when videos are captured in a low-light envi-

ronment. Due to the nature of the camera shakes, however,

not all frames are equally blurred [2, 3]. Moderate shakes

often deliver relatively sharper frames, while drastic motion-

s yield strong blurs. In this work, we attempt to use sharp

frames to synthesize the blurry ones. Please refer the project

page for videos. 1

Traditional image deblurring methods estimate a unifor-

m blur kernel [4, 5, 6, 7] or spatially varying blur kernel-

s [8, 9, 10, 11, 12, 13, 14], and deblur the frames using d-

ifferent penalty terms [4, 6, 7] by maximizing the posterior

1http://www.liushuaicheng.org/ICIP2016/deblurring/index.html

distribution [5, 15] of the latent image during image deconvo-

lution [15, 16]. However, such a deconvolution can introduce

ringing artifacts due to the inaccuracy of blur kernels. More-

over, it is time-consumming to decovolve every single frame

through the entire video [3].

Video frames usually contain complementary informa-

tion that can be exploited for deblurring [2, 3, 17, 18, 19].

Cho et. al. [3] presented a framework that transfers sharp

details to blurry frames by patch synthesis. Zhang et. al. [18]

jointly estimated motion and blur across multiple frames,

yielding deblurred frames together with optical flows. Kim

et. al. [19] focused on dynamic objects. However, all these

methods estimate blur kernels and rely on them heavily for

deblurring, while the blur kernel estimation on casually cap-

tured videos is often challenging due to depth variations,

noises, and moving objects.

The nearest neighbor match between image patches, re-

ferred to as “patch match”(PM) [20, 21, 22], finds the most

similar patch for a given patch in a different image region. In

our context, we divide a blurry frame into regular blur patch-

es. For each blur patch, we find the most likely sharp patches

in sharp frames to replace it. Therefore, the quality of de-

blurring is dominated by the accuracy of PM. Traditional ap-

proaches [2, 3] estimate the blur kernel from the blurry frame

and use it to convolve the sharp frames before PM. We re-

fer this process as “convolutional patch match” (CPM). Our

method directly compares a blur patch with sharp patches,

which is referred as “direct patch match” (DPM). Intuitively,

DPM will deliver inaccurate nearest neighbor matches, as the

matched patches are under different conditions - one is blur

and the other is sharp. In our work, however, we will provide

both empirical and practical evidences of DPM for its high

quality and performance in video deblurring.

In this work, we propose a synthesis-based approach

that neither estimates kernels nor performs deconvolutions.

Specifically, we first locate all blurry frames in a video. For

every blurry frame, we find the nearby sharp frames. To

deblur one frame, we adopt a process of pre-alignment that

roughly aligns all sharp frames to the target blurry frame be-

fore the DPM searching. Moreover, instead of search over all

sharp frames, we only search over a synthesized sharp frame

that is fused from different regions of sharp frames through an

“Markov random field” (MRF) region selection that ensures
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Fig. 1. The thumbnail of 10 pairs of frames selected for ex-

periment. In each pair, the top row and bottom row show the

blur and sharp frames, respectively.

the spatial and temporal coherence. Each blur patch will find

one sharp patch, which is used to synthesize the deblurred

frame. Notably, the key differences between our method and

[3] is that we do not estimate blur kernels and only search in

merged sharp frames. In summary, our contributions are:

• We propose to use DPM for a synthesis-based video

deblurring, which is free from the challenges of blur

kernel estimations and image deconvolutions.

• With pre-alignment and region selection, we only

search in a limited search space, which highly ac-

celerates the whole system.

• We show that the pre-alignment not only reduces the

search space, but also increases the accuracy of DPM.

2. ANALYSIS

We first conduct an experiment to show the difference be-

tween CPM and DPM, both visually and numerically. In P-

M, the “sum of squared differences” (SSD) is the commonly

adopted metric [20] in evaluating patch distances. We adopt

this metric in our evaluation. We collect 10 blurry frames as

well as their neighboring sharp frames from 10 videos, cov-

ering static/dynamic scenes, planar/variation depths. Fig. 1

shows the blurry and sharp frame pairs and all frames have

resolution of 1280 × 720. For CPM, we estimate the blur

kernels by the approach [23]. We collect patches with size

21× 21 for every two pixel in the blurry frame and assign the

search region of 31 × 31 in the corresponding position at the

target sharp frame. We conduct the nearest neighbor search

and record the best match index for both methods.

For each blur patch, the L2 distance is calculated between

indexes obtained by two methods. The averaged index differ-

ences over all blur patches are shown in Tab. 2. We further

record the averaged patch SSD. While the DPM method pro-

duces a larger SSD as compared with CPM in all examples,

the index difference remains small. In fact, all we want are

the correct indexes, instead of the actual SSD. Therefore, we

adopt DPM in our system.
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Fig. 2. Results by CPM and DPM. In each pair, the top and

bottom row show the result by CPM and DPM, respectively.

#1 #2 #3 #4 #5

Avg. index diff. 1.80 0.94 1.82 1.51 2.51

Avg. CPM SSD 3.02 3.22 5.97 3.09 5.97

Avg. DPM SSD 4.84 5.91 10.78 4.79 13.25

#6 #7 #8 #9 #10

Avg. index diff. 1.88 0.87 1.95 0.94 0.87

Avg. CPM SSD 4.80 0.49 0.47 0.32 0.50

Avg. DPM SSD 7.81 0.75 0.57 0.45 0.76

Table 1. Averaged index differences and patch errors.

Fig. 2 shows the visual comparison of the deblurred re-

sults by two methods. The small differences in index would

not introduce visual differences in the deblurred results, im-

plying that such small index differences are negligible.
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Finally, the figure on the

right shows what happens dur-

ing one patch search. Here,

the x-axis denotes the sharp

patche’s index in the search re-

gion and the y-axis shows the

SSD value. The CPM method

(blue curve) does produce a s-

maller SSD as compared with

the DPM method (red curve),

but they both yield the same best match index.

3. OUR METHOD

Fig. 3 shows our system pipeline of deblurring one frame.

We first locate the blurry frames and the sharp frames accord-

ing to the gradient magnitude [3]. Fig. 3 (a) shows a piece

of video volume with one blurry frame (red border) and its

surrounding sharp frames (blue border). Then, we align all

sharp frames to the blurry frame (Fig. 3 (b)) by matching the

features and the mesh warping. Notably, the pre-alignment

is inaccurate. It can only compensate a rough global camera

motion. The accuracy will be improved by DPM. Then, we

choose the sharpest regions from all aligned sharp frames to

produce a sharp map (Fig. 3 (c) bottom), which is searched

by blur patches from the blurry frames (Fig. 3 (c) top). The

final result is shown at Fig. 3 (d).



Fig. 3. The pipeline of deblurring one frame in our method. (a) A blurry frame (red border) and its nearby sharp frames (blue

border). (b) Sharp frames are aligned with the blurry frame by mesh warping. (c) A sharp map, generated by sharp regions

from sharp frames, with different colors representing different frames. (d) The deblurred result.

Fig. 4. Deblurred results with and without pre-alignment.

3.1. Pre-alignment

We detect features on the sharp frame [24] and track them

to the blurry frame [25]. The mesh-based warping [26, 27] is

adopted to warp the sharp frame based on the tracked features.

More advanced approaches can be considered [28]. Though

the alignment quality is limited due to the inaccuracy of track-

ing in blur, it can successfully compensate the global camera

motion which is similar to searching across translations, ro-

tations and scales [21]. Without it, we only search the trans-

lational space. Fig. 4 shows a comparison of deblurring one

frame with and without pre-alignment. As shown in Fig. 4

(b), without the alignment, the best matched sharp patch is

slightly leaned, accumulating to zigzag artifacts (Fig. 4 (e)).

3.2. Region Selection

To improve the efficiency, we only search for a sparse regu-

lar grid of pixels (every 6 pixels), instead of all pixels. This

sparse sampling can avoid over smoothing where a pixel is

covered by many patches if sampled densely. Each sharp

frame provides a search region for a blur patch. In general,

we can search all of them. For speed, we only search from

one sharpest region among all sharp regions.

Suppose that the grid is a graph ζ = 〈ν, ε〉, where ν is the

set of all nodes and ε is the set of all arcs connecting adjacent

nodes. The nodes are blur patch centers and the arcs denote

four connected neighboring system. Different sharp frames

have different labels {xi}. We want to assign a unique label

xi for each node i ∈ ν. The solution X = {xi} can be

obtained by minimizing the energy function:

E(X) =
∑
i∈υ

E1(xi) + λ
∑

(i,j)∈ε

E2(xi, xj). (1)

Here, E1(xi) evaluates the sharpness of a region and is

calculated as the averaged gradient magnitude within a patch,

and E2 encourages the spacial coherence. If a blur patch

searches in the sharp frame t, we want its neighboring blur

patches to search in the same sharp frame t. E2(xi, xj) is

defined as: {
xi = xj , E2 = 0·
xi �= xj , E2 = 500· (2)

In our implementation, we set λ = 1 and the number of

labels as 8. Specifically, for a blurry frame, we find 4 sharp

frames in the future and another 4 in the past. The energy can

be minimized efficiently via graph cut [29], which produces a

sharp map for the subsequent DPM search.

3.3. Synthesis

We apply the DPM search according to the sharp map, after

which each blur patch can find one sharp patch Sk, which is

used to replace the blur patch. The sharp patches may have



Fig. 5. Our deblurred results on various casually captured videos.

overlaps so that a pixel receives multiple values. The final

value of a pixel is calculated as:

p(i, j) =
1

Z

∑
p(i,j)∈Sk

wkSk(i
′, j′), (3)

where k indexes sharp patches and (i, j) indexes pixels,

(i′, j′) refers to the same pixel (i, j) in the patch local coor-

dinates, wk is a weight that is calculated for each patch to be

proportional to the gradient magnitude of a patch, and Z is a

normalization factor, computed as Z =
∑

p(i,j)∈Sk
wk. Here,

we want to assign more weights to a sharper patch. More

advanced approaches can be adopted [30, 31].

3.4. Details and Speed

Without pre-alignment, we have to search from a large region

as the camera is shaky. Now, we can only search from a small

region (Fig. 3 (c), white rectangle), centered at the same loca-

tion of a blur patch in the sharp frame. During DPM, we set

the patch size as 21 × 21 pixels. At synthesis, we choose a

relatively smaller patch size 12× 12 to reduce pixel overlaps.

The search region has size 15 × 15. We run our method on

an Intel i7 2.4GHz CPU. We deblur a frame with resolution

1280× 720 in 10 seconds (1 second for MRF and the rest for

DPM). In [3], with an Intel i7 CPU, a frame with the same

resolution is deblurred around one minute. Our method can

be further accelerated by parallel processing (e.g., GPU).

3.5. Iterative Refinement

Deblurring every blurry frame consists of a pass. In most sit-

uations, one pass is enough. However, for situations where no

sharp frames are detected around a blurry frame, we need to

take multiple passes. Specifically, to propagate frame details

across a longer range, we adopt iterative scheme where a de-

blurred frame can be considered as sharp frame to deblur the

remaining blurry frames in the next iteration.

4. EXPERIMENTS AND DISCUSSIONS

We compare our method with the state-of-art method [3] in

Fig. 6. Clearly, our method produces a sharper result (some

Fig. 6. Comparison with the state-of-art method [3]. The left

shows the result of [3] obtained from their project page. The

right shows our result.

of the regions are highlighted). In the method of [3], it can-

not handle excessive shaky clips. With the pre-alignment, we

can deblur those footages properly. If blur kernels are esti-

mated correctly, both DPM and CPM have similar effects in

deblurring. However, if the kernel estimation goes wrong,

CPM can introduce some side-effects (e.g., zigzag, ghosting).

In a sense, DPM is similar to “Ostrich algorithm” by ignoring

the difficulties. However, such neglecting does not introduce

any substantial harms to the results, which becomes the most

interesting part of this paper. More results are shown in Fig. 5.

5. CONCLUSION

We have presented a synthesis-based video deblurring frame-

work that restores blurry frames from nearby sharp frames.

We found that our proposed DPM can successfully approxi-

mate CPM and works well in practice. Without forward con-

volution or deconvolution, our method is simple yet effec-

tive. We use the pre-alignment and the sharp map to reduce

the search space, which not only increase the efficiency but

also improve the accuracy of DPM. Moreover, the proposed

method is scalable for parallel computing. Its robustness has

been tested over various challenging videos.
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