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ABSTRACT

This paper studies the image fusion from multiple images tak-

en by hand-held cameras with different exposures. The exist-

ing methods often generate unsatisfactory results, such as the

blurring/ghosting artifacts due to the problematic handling of

camera motions, dynamic contents, and inappropriate fusion

of local regions (e.g., over or under exposed). They often re-

quire high quality image registration before fusion. However,

the accurate alignment is hard to obtain in many scenarios,

such as scenes with large depth variations and dynamic tex-

tures. Besides, high quality alignment is also time consuming.

In this paper, we only enable a rough registration by a sin-

gle homography and combine the inputs seamlessly to hide

any possible misalignment. Specifically, we propose to use a

Markov Random Filed (MRF) function for the labelling of all

pixels, which assigns different labels to different aligned in-

put images. During the labelling, we choose well-exposured

regions and skip moving objects simultaneously. Then, we

combine a Laplace image according to the labels and con-

struct the fusion result by solving the Poisson equation. We

present various challenging examples to demonstrate the ef-

fectiveness and practicability of our approach.

Index Terms— Multi-exposure fusion, MRF, rough reg-

istration

1. INTRODUCTION

High-dynamic-range (HDR) imaging techniques have re-

ceived lots of attentions from both research and industry

communities. There are two main categories to do the syn-

thesis. The first one directly synthesizes the result from

multi-exposure images [1, 2], the other reconstructs an H-

DR image firstly and then applies the tone mapping for the

display [3, 4]. Our method belongs to the first category.

Although the multi-exposure fusion (MEF) approaches

have been studied extensively, there are still some drawback-

s. For instance, ghosting/blurring artifacts are unavoidable.

The merging techniques have been employed in many ex-

isting methods assumes that multiple exposure images are

accurately aligned [5, 6, 7]. Thus, any misalignments due

to either camera motions or dynamic contents will lead to

ghosting/blurring artifacts. A Laplacian pyramid reconstruc-

tion scheme for image fusion was proposed in [8], which has

been widely adopted in many follow-up works, e.g., [1, 2].

Specifically, in [2], for each pixel location, every aligned can-

didate pixel in the stack contributes to the final pixel value.

If there are any misaligned regions, the fused results would

suffer from the ghosting or blurring artifacts. Figure 1 shows

some examples, where the input images are captured by a

static camera, but the scenes contain dynamic objects (tree

leaves in the left example and moving persons in the right

example). The fused results by [2] suffer from the blurry

(Fig. 1 left) and the ghosting (Fig. 1 right).

Later, some deghosting methods are proposed to handle

the problems [9]. The methods based on energy optimiza-

tion [10, 11]are introduced to maintain the image consistency

or distinguish different parameters. Some patch-based meth-

ods [12, 13, 14] are proposed to handle inputs by patch lev-

el. However, the patch-based reconstruction is not always ro-

bust in some complicated situations, especially when encoun-

tered with dynamic textures (e.g., fountains, tree leaves in the

wind), or structured regions. Fig. 2 shows such an example

with much detailed information in the tree crown regions,

where the methods of [12], [13] and [14] generate unsatis-

factory results which lose many details.

In this work, instead of pursuing a fully registration, we

propose to align the inputs roughly. The high quality fully

registration is challenging. It is difficult to align images under

different appearances [15, 16]. The large foreground [17] and

near-range objects [18] further complicate the alignments.

The non-parametric approaches such as optical flow tend to

generate errors at regions with discontinuous depth [19, 20].

The patch-based reconstruction is also prone to produce er-

rors as shown in Fig. 2. To pursue a robust solution, we

abandon the requirement of fully registration and replace it

by a rough registration with a single homography. We borrow

the similar idea from [21] to composite the roughly aligned

multi-exposure images. We select good exposed regions from

the roughly aligned images and stitch them seamlessly. Our

system can tolerate these alignment errors.

In summary, we focus on fusing images captured by hand-

held cameras and do not require the high quality registration

before fusion. To achieve this, we propose a solution that

selects sub-image regions from different roughly aligned ex-

posures by a MRF labelling and combine them seamlessly in
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Fig. 1. Top images in (a), (b) are Mertens’s results [2]. Our re-

sults are shown in the bottom. The comparison indicates that

our method can effectively solve blur and dynamic objects

the gradient domain. In this way, each pixel value belongs to

a single image such that maintaining details well and handling

blurring effectively. Moreover, we consider the dynamic iden-

tification and exposure selection in the MRF optimization si-

multaneously. The selected regions are not only well-exposed

but are also free from the interferences of dynamic object-

s/textures. Furthermore, we gather a dataset that consists of

120 group of images, ranging from daytime-nighttime, static-

dynamic, and outdoor-indoor. We evaluate our method both

qualitatively and quantitatively. The experiments demonstrate

the effectiveness and robustness of our approach.

2. OUR METHOD

The input images are captured by hand-held cameras. The

first step is to align them. We pick the image with medium ex-

posure as the target. Specifically, we choose the Features from

Accelerated Segment Test (FAST) [22] for the feature detec-

tion and track them by the Kanade-Lucas-Tomasi (KLT) [23].

We use the similar strategy as described in [24] for the fea-

ture prunning and boosting, as such features are more robust

against the luminance differences. Figure 3 shows our sys-

tem pipeline after the alignment. Without loss of generality,

we take four input images as an example. Fig. 3(a) shows

the aligned input images. Fig. 3(b) displays corresponding

weight maps calculated by method [2]. Then, we use these

weights to produce a label map (Fig. 3(c)) through MRF ener-

gy minimization. We collect the Laplace values at each pixel

from different images according to the label map to yield a

Laplace image. By solving the Poisson equation properly, we

obtain the final result as shown in Fig. 3(d).

We optimize the following energy for the labelling:

EpXq “
ÿ
iPυ

E1pxiq ` λ1 ÿ
iPυ

E2pxiq ` λ2 ÿ
pi,jqPε

E3pxi, xjq (1)

Fig. 2. (a) Result by [12]. (b) Result by Hu [13]. (c) Result

by Sen [14]. (d) Our result.

where each candidate image corresponds to a label and xi is

the label of the pixel i. E1pxiq and E2pxiq are data terms, in

which E1pxiq is the likelihood energy representing exposure

qualities. It encodes the color similarity of a pixel, indicating

that which image it belongs to. E2pxiq encodes the dynamic

information. E3pxi, xjq is the smoothness term. υ is the set of

all pixels and ε is the set of adjacent pixels. λ1 and λ2 balance

the terms. We set λ1 “ 3 and λ2 “ 5 in our implementation.

The energy can be minimized by Graph-cut [25].

2.1. Exposure Weights

E1pxiq represents the pixel quality. It consists of three parts:

contrast, saturation and exposedness, which are combined to

form a weight map W for the fusion [2]. Here, we use the

weight map as the probability for selecting image regions:

E1pxi “ labelq “ 1

Wlabelpiq ` eps
(2)

where label corresponds to the image labels; eps is set as

0.001 in our method to avoid Wlabelpiq “ 0; W is the com-

bined weight map of input image:

Wi “ Ci ¨ Si ¨ Ei, (3)

where Ci, Si, and Ei refer to the weight of contrast, satu-
ration, and exposedness, respectively; “¨” is the Hadamard

product; W is normalized between p0, 1q.

2.2. Dynamic Exclusion

We want to exclude the dynamic areas which need to first

locate these regions. To achieve this, we adopt the ap-

proach [26], which applies an energy optimization to de-

tect dynamic objects. The pixels of each input image are

identified by a mask M :

Mpiq “
"

0 i P static areas
1 i P dynamic areas

(4)
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Fig. 3. The pipeline of our method. (a) Aligned input images where the third image is the reference. (b) Weights maps. (c)

Final labels obtained by weight maps, with different color representing different input images. (d) The fusion result.

Then, M is feeded into E2pxiq:

E2pxi “ labelq “
" 8, Mpiq “ 1

0, Mpiq “ 0
(5)

We increase the energy to avoid dynamic pixels. When a pixel

is static, E2pxiq does not introduce any penalties. Otherwise,

if the pixel i of one input is detected as dynamic pixel, we set

E2 “ 8 to choose the value of pixel i from other images.

2.3. Spatial Smoothness

E3pxi, xjq is the smoothness term. It is defined as [27],

E3pxi, xjq “ |xi ´ xj | ¨ gpCijq, (6)

where gpCijq “ 1
1`Cij

and Cij “ ||Cpiq ´ Cpjq||2. Cpiq
represents color information:

Cpiq “ rRpiqs2 ` rBpiqs2 ` rGpiqs2 (7)

where R, G and B are three channels of input image. Cij is

the L2-norm of the RGB color difference of two pixel i and j.

Therefore, if two pixels have large difference, gpCijq is near

to 0. E3pxi, xjq is a penalty term when adjacent terms are

assigned with different labels.

Figure 4 shows the results of our labeling. The result of

Fig. 4(b) is obtained by removing E2 from Eq. (1). The labels

are purely based on the quality of exposures when only E1 is

involved. In Fig. 4(c), the persons in the second image can be

excluded if dynamic detection is enabled.

3. EXPERIMENTS

We assemble a comprehensive dataset of 120 groups multi-

exposure image sequence from previous publications, Internet

and our own capture. More results of our method are shown

in the supplementary file. In this section, for the comparison,

several typical MEF methods are selected [2, 5, 6, 7] (we col-

lect the code from the authors and generate their results with

Fig. 4. (a) Input images where the third image is the refer-

ence. (b) Labels without dynamic term. (c) Final labels with

dynamic term. Notably, if we want to keep the persons, we

can select the second image as the reference.

same inputs). Both visual comparisons and objective evalua-

tion are conducted in the experiments.

3.1. Visual comparisons

We conduct two visual comparisons of our method with [2,

5, 6, 7]. The comparison results are shown in Fig. 5. The

top row displays the results of a roughly aligned scene. There

are some slight misalignments in nether parts of inputs. We

found that other methods ((a)-(d) in top row) are not sensi-

tive to such cases. They have different degree of fuzziness in

the ‘text’ regions. Our method abandons generating results

from every input. We select regions from single image which

avoid blur artifacts effectively. The bottom row shows the

results of a dynamic scene where exists a moving man. [2]

and [7] have severe ghosting. [5, 6] can solve dynamic ob-

jects to some extent, while [6] still exists slight ghosting and

[5] blurs the leaves in left region of their result. Our method

does not involve synthesis process. It is likely to select areas

continuously so it generally owns higher visual quality.
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Fig. 5. Comparison with [2, 5, 6, 7]. (a) Results of [2]. (b) Results of [5]. (c) Results of [6]. (d) Results of [7]. (e) Our results.

Please zoom in for a clearer observation.

Table 1. Image performance of different methods. The corresponding images are shown in supplement file.
Index Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9

[2]
QMI 0.489 0.262 0.505 0.411 0.446 0.565 0.874 0.57 0.408

QNCIE 0.629 0.609 0.632 0.625 0.623 0.635 0.658 0.637 0.625

[5]
QMI 0.22 0.219 0.406 0.47 0.449 0.388 0.875 0.636 0.462

QNCIE 0.623 0.608 0.629 0.627 0.624 0.628 0.659 0.641 0.628

[6]
QMI 0.314 0.222 0.287 0.321 0.361 0.326 0.842 0.567 0.277

QNCIE 0.624 0.609 0.626 0.623 0.621 0.627 0.658 0.638 0.622

[7]
QMI 0.28 0.146 0.431 0.235 0.235 0.293 0.623 0.38 0.313

QNCIE 0.623 0.607 0.63 0.618 0.619 0.626 0.649 0.631 0.622

Ours
QMI 0.563 0.297 0.47 0.527 0.472 0.441 0.861 0.655 0.446

QNCIE 0.635 0.612 0.632 0.632 0.626 0.630 0.659 0.643 0.628

3.2. Objective assessments

We adopt two popular image fusion metrics QMI [28] and

QNCIE [29] to evaluate the performances objectively. The

metric QMI is defined as:

QMI “ MIpA,F q
HpAq ` HpF q ` MIpB,F q

HpBq ` HpF q (8)

where A, B are inputs; F is fusion result; H represents the

marginal entropy of an image; MI is mutual information be-

tween two images. QMI measures how well the original in-

formation from source image is preserved in the fused image.

The large value of QMI indicates better results.

The nonlinear correlation entropy QNCIE , used as a non-

linear correlation measure, is defined as:

QNCIE “ 1 `
Kÿ
i“1

λi

K
logb

λi

K
(9)

where b is determined by the intensity level; λipi “ 1, ...,Kq,

is the eigenvalues of the nonlinear correlation matrix. NCIE

owns strong suitability as a measure for the nonlinear type

of correlation of multiple variables. Similar to QMI , large

QNCIE value indicates better results. Table 1 summaries the

QMI and QNCIE values with respect to 9 examples. Our

method can produce superior results on most of the cases.

In the comparison, we notice that if the original images

exist large shaking and possess some depth variations, they

cannot be aligned perfectly. Our method performs well with

respect to these misaligned regions compared with other ap-

proaches. Because our seams can stitch different parts of the

input images, which bypass the misaligned regions and hide

them behind. Moreover, the seams can also bypass the dy-

namic objects, which naturally avoid the ghosting artifacts.

By combining different parts of the input images, our method

generate good results from roughly aligned images, thus re-

laxing the challenging alignment problem.

4. CONCLUSION

We have presented a method for accurately fusing multi-

exposure images. We do not require high quality registration.

We select good exposed regions from the roughly aligned im-

ages. Good seams are found to hide the misalignments when

solving Poisson equation. The results are evaluated qualita-

tively and quantitatively to demonstrate its effectiveness.
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